Vision-Guided Action: Enhancing 3D Human Motion Prediction with
Gaze-informed Affordance in 3D Scenes
—Supplemental Material—

A. Training Details

Here, we outline the training process for GAP3DS, includ-
ing GazeNet, Affordance-aware Pose Generator, and Dual-
Prompted Motion Decoder. All components are trained on 8
NVIDIA RTX 4090 GPUs, achieving convergence in under
30 minutes.

A.l. Training GazeNet

Since the original datasets [1, 8] lack annotations for the in-
teraction map M, we enrich them by annotating each mo-
tion sequence with interaction information. GazeNet serves
as a temporal aggregator, transforming the distance map D
into an interaction map M to predict future interactive ob-
jects effectively. To ensure accurate predictions, the interac-
tion map M is annotated based on two critical factors: the
contact area between humans and objects M,y and the
proximity of humans to scene elements M p,ox:
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where Gar(,,») Tepresent Gaussian functions with mean g
and standard deviations ¢, modeling the spatial distributions
of contact and proximity. We set o0y = 0.5 and o2 = 1.0 for
balance. The functions Dist3D and Dist2D calculate the
3D distances and X-Z 2D distance functions (Y-axis denotes
height) distances between scene points .S and human inter-
action data H contact. The weights Acone = 1 and Aprox = 2
balance the contributions of contact and proximity factors in
the final interaction map M .

After annotating the interaction map M, GazeNet is
trained to minimize the discrepancy between the predicted
interaction map and the annotated map using a Kullback-
Leibler (KL) divergence loss:

Lgae = KL(M || GazeNet(S,Gr.1)),  (4)

where G'1.1, represents the sequence of gaze points over L
time steps. The KL divergence ensures that the predicted in-

teraction map aligns closely with the ground truth, enabling
GazeNet to robustly capture spatial-temporal relationships
between human gaze and scene elements.

A.2. Training Affordance-aware Pose Generator

The Affordance-aware Pose Generator predicts the interac-
tive poses POA L—w:a g directly instead of predicting noise
(detailed in Section 3.3 of the main paper), following
[12, 13, 20]. The training process includes a basic diffusion
loss to ensure accurate reconstruction of interactive poses
over the prediction window [AL — w, ALJ:
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where POA L—w:Az denotes the predicted interactive poses,
and P AL represents the corresponding ground truth.

To enhance the precision of destination prediction at the
final timestep AL, we incorporate a destination-specific
loss inspired by [22]:
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where P ; and P9 ; denote the predicted and ground truth
poses at the final timestep, respectively.
The overall training loss is defined as a combination of
these two components:

Laitr = Loase + Laest- (7

This comprehensive loss function not only ensures the
pose’s accuracy but also enhances the precision of the des-
tination prediction.

A.3. Training Dual-Prompted Motion Decoder

The Dual-Prompted Motion Decoder is trained to recon-
struct both trajectories and poses while ensuring physically
realistic motion. The trajectory reconstruction 108, Lz p,
and the pose reconstruction 1oss, Lpose p, are defined us-
ing L1 loss functions, while the joint reconstruction loss,



Lioint_p» is measured as the mean per joint position error [8]:
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where U, and V', are the predicted global translations and
orientations at timestep ¢, and N; = 23 represents the num-
ber of skeleton joints based on the SMPL-X model [10].

To enhance physical plausibility, we incorporate geomet-
ric losses following [12]. The foot contact loss, Lo, min-
imizes motion inconsistency for joints in contact with the
ground, mitigating the foot-sliding effect [11]:
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where f,; € {0,1} is a binary contact mask indicating
whether joint j is in contact with the ground at timestep ¢.
The velocity loss, L., enforces smooth motion dynamics
by aligning predicted velocities with ground truth:
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To prevent unrealistic human-scene intersections, we in-
corporate a penetration loss Lpe,, penalizing negative dis-
tances between human and the nearest scene points [5]:
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where fP denotes the signed distance between a human ver-
tex and the nearest scene point.

The final training objective for the motion decoder is a
weighted combination of all loss terms:
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where the geometric loss weight 3 is set to 1.0, and the
remaining weights are set as follows: Awaj p = Aposep =
>\j0im_p =1, Moot = Avet = 0.5, and >\pen = 0.1. This
training strategy ensures that the Dual-Prompted Motion
Decoder generates physically consistent and semantically
accurate human motions in 3D environments.

B. Comparison with Motion Synthesis

We recognize recent advances in human motion synthesis,
particularly scene-aware methods [3, 4, 6, 7, 16, 21] that
integrate environmental context to generate human-object
interactions or text-guided motions. While effective for
motion synthesis, these methods are not directly applica-
ble to human motion prediction, which emphasizes predict-
ing future motions based on past observations, requiring ex-
plicit modeling of temporal dependencies and fine-grained
human-object interactions.

B.1. Adapting AffordMotion for HMP

AffordMotion [16] achieves state-of-the-art performance in
scene-aware motion synthesis by leveraging scene affor-
dances as intermediate representations to bridge environ-
mental context and motion generation. Scene affordances
focus on identifying potential interaction regions, enabling
contextually relevant motion synthesis.

To adapt AffordMotion for HMP tasks, we encode
the entire observed motion sequence X ; using a 2-layer
transformer encoder [14], replacing its original language-
guidance mechanism. This modification ensures temporal
information from historical frames is preserved and directly
contributes to motion predictions. Additionally, instead of
generating motions from scratch, the synthesis process ini-
tializes from the last observed frame, providing a realis-
tic starting point. These adaptations enable AffordMotion
to utilize its affordance representations while maintaining
compatibility with the predictive requirements of HMP.

B.2. Experimental Results

Table | presents the comparative performance of GAP3DS
and AffordMotion on the GIMO dataset. AffordMotion ex-
cels in average trajectory prediction (Traj-P) by effectively
capturing broad environmental structures through scene af-
fordances. However, it struggles with precise endpoint tra-
jectory alignment (Traj-I), reflecting its limitations in pre-
dicting motions that require fine-grained spatial precision
and object-specific interactions.

In contrast, GAP3DS leverages gaze-informed affor-
dances to infer human intent at a more granular level, en-
abling superior performance in both trajectory and pose pre-
diction. GAP3DS achieves lower errors in detailed human-
object interactions (MPJPE-I) and overall pose refinement
(MPJPE-P), demonstrating its ability to produce physically
consistent and semantically meaningful motions. This im-
provement is attributed to GAP3DS’s interactive pose gen-
eration and dual-prompted mechanism, which seamlessly
integrate trajectory guidance and pose refinement.

B.3. Discussion

While AffordMotion demonstrates strong capabilities in
modeling average trajectory trends, its reliance on scene-



Method Traj-P | Traj-1| MPJPE-P| MPIPE |
AffordMotion [16] 571 627 151.7 180.3
GAP3DS 575 623 141.2 171.4

Table 1. Comparison between GAP3DS and AffordMotion [16]
on GIMO [22]. The best results are highlighted in bold.

level affordances limits its ability to model object-specific
interactions and refine poses. GAP3DS addresses these
gaps by incorporating gaze-informed affordances and adap-
tive pose generation, resulting in accurate, contextually rel-
evant, and physically plausible motion predictions. These
results underscore the importance of integrating object-level
affordances and dual-prompted mechanisms for advancing
HMP tasks.

C. Experiments on GTA-IM

We evaluate GAP3DS against four state-of-the-art base-
lines: MDP [17], AuxFormer [18], GIMO [22], and
SIF3D [8] on the synthetic dataset GTA-IM [1], focusing
on both trajectory and pose prediction. Since GTA-IM
does not include explicit gaze annotations, we approximate
gaze points by calculating the intersection of rays originat-
ing from the human face with the 3D scene, following the
methodology outlined in [8].

The experimental results in Table 2 underscore
GAP3DS’s superior trajectory accuracy, achieving the best
performance in both Traj-path and Traj-interact. By lever-
aging gaze-informed affordances, GAP3DS predicts trajec-
tories that closely align with ground truth, particularly in
scenarios requiring precise spatial alignment for effective
human-object interactions. In pose prediction, GAP3DS
outperforms the baselines, achieving the lowest errors in
both average pose error (MPJPE-path) and interaction pose
error (MPJPE-interact). While SIF3D captures general tra-
jectory patterns effectively, it struggles to refine poses and
model object-specific interactions due to its reliance on gaze
coordinates without affordance reasoning. GAP3DS ad-
dresses these limitations by integrating its dual-prompted
motion decoder and affordance-aware pose generator, en-
abling semantically consistent and physically plausible mo-
tion predictions.

Overall, these experiments demonstrate GAP3DS’s
adaptability and effectiveness in synthetic 3D environ-
ments. By incorporating object-level affordance reasoning
and adaptive pose generation, GAP3DS consistently outper-
forms existing SoTAs, delivering accurate, contextually rel-
evant, and physically coherent trajectory and pose predic-
tions.

| Trajectory Deviation | Pose MPJPE (in mm)

Method
| Traj-P|  Traj-1, | MPJPE-P| MPIPE-1|
AuxFormer [18] | 772 1072 182.0 250.2
GIMO [22] 683 903 164.6 234.2
MDP [17] 650 851 163.5 220.5
SIF3D [8] 626 836 164.9 227.7
GAP3DS 614 802 150.1 210.5

Table 2. Comparasion of trajectory deviation and pose MPJPE on
GTA-IM [1]. The best results are highlighted in bold.

D. Ablation Study on GazeNet

GazeNet serves as a temporal aggregator, converting dis-
tance maps into interaction maps to predict future inter-
active objects with high accuracy. To further explore the
optimal method for predicting interaction scores, we com-
pare the default convolution approach with alternatives, in-
cluding Max pooling, Average pooling, and recurrent oper-
ations.

The results in Table 3 highlight the superiority of the
convolution approach, which effectively captures both spa-
tial and temporal patterns through its convolution opera-
tions. In contrast, Average pooling fails to filter noise
caused by gaze shifts, leading to diluted interaction scores.
Max pooling highlights high interaction regions but is
overly sensitive to individual points, ignoring surrounding
contextual features and producing noisy predictions. Re-
current operations enhance temporal pattern recognition but
struggle with spatial features and impose high computa-
tional costs, limiting scalability.

These findings emphasize the robustness and efficiency
of convolution operations in GazeNet. By smoothing noise
and accurately capturing interaction patterns, GazeNet con-
sistently generates reliable interaction maps, making it the
most suitable method for predicting future interactive ob-
jects in GAP3DS.

E. Experiments on Long-term Prediction

Long-term motion prediction plays a critical role in applica-
tions requiring extended temporal understanding [2, 9, 15,
19]. However, extending prediction horizons often results
in challenges such as accumulated errors and diminished
contextual coherence.

To evaluate the robustness and accuracy of GAP3DS in
long-term motion prediction, we test its performance across
5 intervals, from 4200 ms to 5000 ms, with 200 ms in-
crements. Table 4 reports MPJPE results, providing a fine-
grained assessment of each model’s capability to maintain
prediction quality over time. GAP3DS demonstrates con-
sistent superiority, achieving the lowest MPJPE at all time
intervals. While SIF3D and MDP maintain reasonable per-
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Figure 1. Additional visual comparison of GAP3DS with SoTA SIF3D [8] across two challenging indoor scenarios: Seminar Room
and Lab. The purple human meshes represent the ground truth, the brown meshes indicate the model predictions, and the blue meshes
represent historical motion sequences. GAP3DS outperforms SIF3D by achieving accurate trajectories, smooth and continuous poses,
and physically consistent predictions. Its ability to model natural human-object interactions demonstrates the effectiveness of gaze-guided
affordances and dual-prompted mechanisms, making it a robust solution for human motion prediction in real-world 3D environments.

g

Figure 2. Visualization on non-interaction and multi-interaction cases. In rare non-interaction scenarios (left), the predicted motion aligns
well with the expected trajectory, demonstrating temporal coherence when no clear affordance target is present. The failure case (right),

where the model predicts direct interaction with the computer (orange) instead of first sitting down (purple), reveals limitations in handling
sequential interactions.



Aggregator Traj-P| Traj-I| MPJPE-P| MPJPE-I| MPJPE 4.2s 4.4s 4.6s 4.8s 5.0s
Ave. Pool. 585 637 150.9 182.5 AuxFormer [18] 174.1 1855 1864 199.0 217.1
Max Pool. 577 629 146.3 176.6 BiFU [22] 1732 183.0 187.7 1982 2148

Rec. Op. 577 621 140.5 173.0 MDP [17] 155.1 1709 1784 1848 2005
Conv. Op. 576 623 141.2 171.4 SIF3D [8] 150.6 168.1 1749 189.2 206.0

Table 3. Ablation study of GazeNet on GIMO [22]. Comparison
of the default convolution operation with max pooling, average
pooling, and recurrent approach for predicting interaction scores.
The best results are highlighted in bold.

formance at shorter intervals, their errors escalate signifi-
cantly at longer horizons, reflecting limitations in temporal
consistency. These findings underscore GAP3DS’s capacity
to deliver robust and reliable long-term motion forecasts.

F. More Visualizations

Figure 1 showcases the visualization comparison between
GAP3DS and SIF3D across two challenging indoor scenar-
ios: Seminar Room and Lab. Purple represents ground-truth
motions, brown indicates model predictions, and blue de-
notes observed trajectories. GAP3DS demonstrates robust
scene parsing, accurately identifying and segmenting inter-
active objects such as desks, chairs, and boxes in the parsed
scenes (top-left panels). This capability enables precise spa-
tial reasoning and facilitates contextually aligned motion
predictions.

In the seminar scenario, SIF3D accurately predicts the
trajectory but encounters significant issues with pose con-
tinuity. The final pose appears disconnected from the pre-
ceding motions, resulting in an unnatural and disjointed se-
quence, especially when attempting to interact with the box
on the table. In contrast, GAP3DS maintains not only tra-
jectory accuracy but also seamless pose transitions through-
out the sequence. The final pose aligns naturally with the
earlier frames, effectively capturing the intended motion
of picking up the box, demonstrating both contextual rel-
evance and physical coherence.

In the lab scenario, SIF3D demonstrates limitations in
both trajectory and pose prediction. The predicted tra-
jectory deviates noticeably, failing to navigate effectively
around scene obstacles. This limitation results in the mo-
tion prediction missing essential interactions with the tar-
get object. Additionally, SIF3D produces severe physical
inconsistencies, such as the subject penetrating the table,
highlighting a lack of respect for spatial boundaries and
object geometries. In contrast, GAP3DS accurately navi-
gates around the table to reach the target chair, delivering
a consistent and contextually accurate motion prediction.
Its trajectory remains well-aligned with the ground truth,
and the generated poses accurately represent the "sitting"
action, producing a seamless and physically coherent mo-
tion sequence that respects spatial constraints. These results
underscore GAP3DS’s capability to generate environment-

GAP3DS 1434 1539 1583 1743 185.2

Table 4. Experiments on long-term motion prediction on GIMO
[22]. The best results are highlighted in bold.

aware and interaction-consistent human motion sequences
in real-world 3D scenes.

In summary, GAP3DS outperforms SIF3D by achiev-
ing accurate trajectories, smooth and continuous poses, and
physically consistent predictions. Its ability to model nat-
ural human-object interactions demonstrates the effective-
ness of gaze-guided affordances and dual-prompted mech-
anisms, making it a robust solution for human motion pre-
diction in real-world 3D environments.

G. Non-Interaction and Sequential Cases

Figure 2 illustrates non-interaction and sequential interac-
tion failure cases in human motion prediction. For rare non-
interaction scenarios, GAP3DS maintains temporal coher-
ence, even when gaze does not clearly indicate a target ob-
ject or affordance scores remain low. As shown in the first
case, the predicted trajectory remains stable without notice-
able anomalies. However, failure cases reveal limitations in
multi-stage sequential interactions. As shown in the second
case, the predicted motion (orange) incorrectly anticipates
direct interaction with the computer instead of first sitting
down before engagement, as observed in the ground truth
(purple). This highlights the need for improved modeling
of sequential human-object interactions.

H. Limitations

While GAP3DS excels in predicting human motion within
3D environments, it has limitations. The model relies heav-
ily on accurate gaze data, which can be noisy in complex
scenarios, and its affordance predictions are restricted to
single objects, overlooking multi-object or sequential in-
teractions. Furthermore, its generalization to unseen do-
mains, such as outdoor environments, remains untested. Fu-
ture work will focus on improving robustness to noisy in-
puts, expanding affordance modeling for multi-object and
sequential interactions, and exploring cross-domain adapt-
ability for diverse environments.
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