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6. Data Alignment

We define two same restoration tasks (image SR or im-

age denoising ) on the HSI dataset and RGBI dataset

as ΓHSI , ΓRGBI , and desire to improve the learning

of model ΓHSI by using the knowledge from ΓRGBI .

Given an HSI dataset ΩHSI =
{
xi
HSI , X

i
HSI

}NHSI

i=1
and

RGBI dataset ΩRGBI =
{
xi
RGBI , X

i
RGBI

}NRGBI

i=1
, where

xHSI ∈ R
h×w×D represents the degraded HSI, XHSI ∈

R
H×W×D represents the high-quality HSI counterpart.

Similarly, xRGBI ∈ R
h×w×3 is the degraded RGB image

and XRGBI ∈ R
H×W×3 is the high-quality counterpart.

h,w,H and W denote the width and height of the degraded

image and desired image, respectively, and D is the number

of HSI bands. For HSI SR, we have H = λh, W = λw,

and λ is the scaling factor. For HSI denoising, λ is set to 1,

and NHSI and NRGBI are the numbers of HSI and RGBI

samples, respectively. We attempt to exploit the advantage

of the RGBI dataset since it provides numerous high-quality

samples. Thus, we have NRGBI = vNHSI and v ≥ 1.

HSIs provide tens to hundreds of spectral bands, and

it is time-consuming to learn all of the band knowledge

at once. Inspired by [19], we divide each HSI input into

samples with overlapping groups of bands. This strat-

egy can retain the spectral correlation among neighbor-

ing bands and reduce the number of parameters. Another

purpose of using a grouping strategy is that it offers the

possibility to train our restoration task using Transformer.

More specifically, we divide the D bands of the HSIs into

groups of S bands. For RGBI samples, we increase the

channels to S via the spectral band interpolation strategy

[23]. This strategy follows a distance rule in that the cor-

relation between neighboring HSI bands should be higher

than that between distant bands. Therefore the generated

RGBI dataset Ω̄RGBI =
{
x̄i
RGBI , X̄

i
RGBI

}NRGBI

i=1
and HSI

dataset Ω̄HSI =
{
x̄i
HSI , X̄

i
HSI

}NHSI

i=1
have similar for-

mats, where x̄RGBI ∈ R
h×w×S , X̄RGBI ∈ R

H×W×S and

x̄HSI ∈ R
h×w×S , X̄HSI ∈ R

H×W×S .

7. Loss Function

We combine the L1 loss and the spatial-spectral total vari-

ation (SSTV) loss [19] to optimize the VolFormer parame-

ters. The L1 loss computes the mean absolute error (MAE)

between the restored images and the ground truth. It is ben-

eficial to penalize pixel errors and ensure better convergence

throughout the training process,

L1 (Θ) =
1

N

N∑
n=1

‖Xn − In‖ , (11)

where In and Xn are the n-th reconstructed result and

ground truth, respectively. N denotes the number of im-

ages in one training batch, and Θ refers to the VolFormer

parameters. the SSTV loss is designed to smooth the recon-

structed result in both the spatial and spectral dimensions,

LSSTV (Θ) =
1

N

N∑
n=1

(‖�hI
n‖1 + ‖�wI

n‖1 + ‖�cI
n‖1) ,
(12)

where �h , �w , and �c represent the horizontal, vertical,

and spectral direction gradients of the reconstruction result,

respectively. The final objective loss function for the our

VolFormer is the sum of the L1 loss and SSTV loss.

L(Θ) = L1 + LSSTV . (13)

The overall loss of our restoration task contains the loss

of the RGBI restoration task and the HSI restoration task.

LTotal(Θ) = LHSI (Xn
HSI , I

n
HSI)+LRGBI (Xn

RGBI , I
n
RGBI) .

(14)

8. Super-Resolution Experiments
8.1. Datasets
CAVE [54]. This dataset contains 32 images with a spatial

resolution of 512×512 and 31 bands collected by a tunable

filter and a cooled CCD camera ranging from 400 nm to

700 nm. We use 20 images for training and 12 images for

testing in our experiment.

Pavia [12]. The Pavia Dataset is a remote sensing hyper-

spectral dataset acquired by the ROSIS sensor about Pavia,

northern Italy. The images contain 102 spectral bands with a

spatial resolution of 1096×1096. The hyperspectral image

contains 9 land-over categories. We crop non-overlapped

patches with a spatial resolution of 128×714. For each im-

age in Pavia, three patches are used for testing and the rest

for training.

Chikusei [55]. The Chikusei dataset was captured by a

Headwall Hyperspec VNIR-C imaging sensor in an urban

area in Chikusei, Ibaraki, Japan. This dataset contains a re-

mote sensing hyperspectral image with a spatial resolution



of 2517 × 2335 and 128 spectral bands. We first crop the

center region to obtain a sub-image with 2048×2048×128
pixels. Then the sub-image is further divided into train-

ing data. The remaining region is used to crop the over-

lap patches for training. Specifically, four nonoverlapping

hyperspectral images with 512×512×128 pixels are gener-

ated from the top region of the sub-image to form the testing

data.

DIV2K [1]. DIV2K is adopted for the auxiliary RGBI SR

task. There are 1000 high-quality images with 2k resolu-

tion. We use 800 samples for the training set and the re-

maining 200 for the test set.

8.2. Experimental Parameters.
During training, for upsampling factor ×4, we let the ex-

tracted patches be 64 × 64 pixels with 32 overlapping pix-

els; for upsampling factor ×8, we let the extracted patches

be 128× 128 pixels with 64 overlapping pixels. The corre-

sponding LR images are generated by Bicubic downsam-

pling with 16 × 16 pixels. In addition, we have per-
formed the super-resolution experiment based on Blur-
downscale (BD) degradation mode in Appendix 8.4. The

training samples of DIV2K are approximately 24, 1, and 8

times larger than the CAVE, Pavia, and Chikusei datasets,

respectively. We use the Adam optimizer and the initial

learning rate is set to 10−4. The batch size is set to 12

and the number of epochs is set to 20. We use the PyTorch

framework to implement our models and all variants. For

the SR task, the TB number, TL number, window size and

attention head number are generally set to 8, 6, 8, and 6,

respectively.

8.3. Super-resolution Experimental Results
In this section, we provide a more comprehensive visual

analysis for hyperspectral image super-resolution. Figure

6 and Figure 7 denote the super-resolution result on CAVE

with the scaling factor of 4 and 8. Figure 8 and Figure 7

represent the super-resolution result on Chikusei with the

scaling factor of 4 and 8. Figure 10 shows the visual results

on Pavia with the scaling factor of 4. Compared with other

methods, the reconstructed results generated by the pro-

posed VolFormer have smoother borders and sharper tex-

tures.

8.4. Results with the Blur-downscale (BD) Degra-
dation Model

We apply our method to the blur-down (BD) degradation

model for super-resolution image reconstruction, which has

been commonly used recently [61, 64]. The quantitative

results of the proposed VolFormer and other comparative

methods on the CAVE dataset are shown in Table 7. Our

VolFormer is robust and maintains significant performance

with the BD degradation model.

We also conducted experiments with the BD model on

the Chikusei dataset. The quantitative results are provided

in Table 8. Similarly, our VolFormer obtains notable quan-

titative gains over eight state-of-the-art methods on the

Chikusei dataset with the BD degradation model.

9. Denoise Experiments

9.1. Datasets
ICVL [3]. The ICVL dataset contains 201 images with a

spatial resolution of 1392 × 1300 over 31 spectral bands.

We randomly selected 100 images as training data and 50

images for testing.

HSIDwRD [63]. The HSIDwRD dataset is the first real-

world dataset for training and testing HSI denoising model.

There are 62 real-world HSIs collected by the SOC710-VP

hyperspectral camera, each with a size of 696 × 520 × 34.

All scenes in the dataset are static. High-quality inference

images are captured by adjusting the aperture, focus, and

exposure time. The noisy counterparts are captured with

the same aperture, focus and 1/50 exposure time as the ref-

erence images. We selected paired noisy and reference im-

ages of 45 scenes to form the training set and the remaining

17 scenes were chosen for the test set.

RENOIR [2]. RENOIR is a dataset for real noise image

denoising tasks that contains 40 scenes with a spatial reso-

lution of 3684×2760 collected by the Canon S90, 40 scenes

collected at 5202× 3465 spatial resolution collected by the

Canon Rebel T3i, and 40 scenes collected at 4208 × 3120
by the Xiaomi Mi3. RENOIR is adopted for the auxiliary

RGBI real-world denoise task. We selected image form 30

scenes to form the testing set and the remaining scenes were

used for training. All of the experiments presented in this

section are performed on an NVIDIA GeForce RTX 3090

GPU.

9.2. Denoise Experimental Settings
During training, all of the training samples were cropped

into patches of 64 × 64 pixels. For the denoising experi-

ment on the synthetic dataset, additive Gaussian white noise

was added to each input HSI with four different noise lev-

els, including 30, 50, 70, and random strengths ranging

from 30 to 70. Besides, we add the mixture noise to the

synthetic dataset. Each band is randomly corrupted by at

least two kinds of Gaussian noise, impulse noise, deadlines

and stripes. For synthetic experiments, the RGBI denoising

task was performed on DIV2K by adding synthetic noise.

The training samples of DIV2K are approximately 10 times

larger than those of ICVL.

For real HSI denoising, the auxiliary RGBI denoising

task was performed on RENOIR. The training samples of

RENOIR are approximately 20 times larger than those of

HSIDwRD. The batch size was set to 12 and the number of



CAVE (×4)
"paints_ms"

(a) Bicubic (b) MCNet (c) ERCSR (d) SSPSR (e) HSISR

(f) DSTrans (g) ESSA (h) CLSCNet (i) Ours (j) GT

Figure 6. Visual comparison for HSI SR on the representative test image paints ms from CAVE dataset with spectral bands 23-15-7 as

R-G-B with the scale factor 4.

(a) Bicubic (b) MCNet (c) ERCSR (d) SSPSR (e) HSISR

(f) DSTrans (g) ESSA (h) CLSCNet (i) Ours (j) GTCAVE (×8)
"photo_ and_face_ms"

Figure 7. Visual comparison for HSI SR on the representative test image photo and face ms from CAVE dataset with spectral bands 23-

15-7 as R-G-B with the scale factor 8.

Scale Method SAM ↓ CC ↑ ERGAS ↓ RMSE ↓ MPSNR ↑ MSSIM ↑

×4

Blur 3.983 0.9852 5.632 0.0228 34.050 0.9251

MCNet[26] 3.748 0.9826 4.226 0.0160 37.032 0.9488

ERCSR[27] 3.444 0.9840 3.632 0.0153 37.484 0.9510

SSPSR[19] 3.442 0.9929 3.680 0.0152 37.944 0.9556

HSISR[23] 3.452 0.9946 3.474 0.0143 38.377 0.9591

DSTrans [56] 3.161 0.9948 3.220 0.0125 39.793 0.9647

ESSA [62] 3.191 0.9942 3.336 0.0132 39.061 0.9598

CLSCNet [53] 3.201 0.9931 3.4126 0.0137 39.256 0.9595

Ours 3.117 0.9951 2.941 0.0120 39.983 0.9658

Table 7. Quantitative evaluation with BD degradation model on CAVE dataset of state-of-the-art SR methods by SAM, CC, ERGAS,

RMSE, MPSNR and MSSIM for scale factors 4. (Best results are shown in bold)

Scale Method SAM ↓ CC ↑ ERGAS ↓ RMSE ↓ MPSNR ↑ MSSIM ↑

×4

Blur 3.568 0.9139 7.128 0.0164 37.175 0.8858

MCNet[26] 3.266 0.9250 6.421 0.0145 37.903 0.9173

ERCSR[27] 3.414 0.9266 6.273 0.0140 38.202 0.9126

SSPSR[19] 2.815 0.9448 5.662 0.0128 39.266 0.9303

HSISR[23] 2.789 0.9452 5.602 0.0128 39.326 0.9302

DSTrans [56] 2.721 0.9485 5.466 0.0125 39.472 0.9343

ESSA [62] 2.680 0.9497 5.410 0.0124 39.614 0.9355

CLSCNet [53] 2.850 0.9481 5.493 0.0127 39.428 0.9317

Ours 2.595 0.9508 5.316 0.0121 39.769 0.9372

Table 8. Quantitative evaluation with BD degradation model on Chikusei dataset of state-of-the-art SR methods by SAM, CC, ERGAS,

RMSE, MPSNR and MSSIM for scale factors 4. (Best results are shown in bold)

epochs was set to 50. We use the PyTorch framework to im-

plement our models and all variants. For the denoising task,

the TB number, TL number, window size and attention head

number were generally set to 6, 6, 8 and 6, respectively.

9.3. Denoise Experimental Results

To visually demonstrate the superiority of our method, we

output the qualitative results and performed a local magnifi-



(a) Bicubic (b) MCNet (c) ERCSR (d) SSPSR (e) HSISR

(f) DSTrans (g) ESSA (h) CLSCNet (i) Ours (j) GTChikusei (×4)

Figure 8. Visual comparison for HSI SR on the representative test image from Chikusei dataset with spectral bands 97-76-63 as R-G-B

with the scale factor 4.

Chikusei (×8)

(a) Bicubic (b) MCNet (c) ERCSR (d) SSPSR (e) HSISR

(f) DSTrans (g) ESSA (h) CLSCNet (i) Ours (j) GT

Figure 9. Visual comparison for HSI SR on the representative test image from Chikusei dataset with spectral bands 97-76-63 as R-G-B

with the scale factor 8.

cation comparison. The visual results are presented in Fig.

11 and Fig. 12, ”Noisy” is obtained by adding the additive

Gaussian white noise with noise levels of 50. It is evident

that our method is superior to the other methods since it

restores more details and achieves pleasing results. The de-

noise result for real noise are presented in Fig. 13 and Fig.

14 . Our method eliminates real-world noise and generates

the clearest text signal and boundaries.

10. Classification Experiments

In this section, we implement experiments on three bench-

mark datasets to illustrate the effectiveness of the proposed

VolSA in classification task. The 16-class Indian Pines

(IP) dataset, the 15-class University of Houston (HU2013)

dataset, and the 16-class Salinas Valley (SV) dataset are

utilized to validate the classification performance. We use

VolSA as the key component to form a classification net-

work. Our network is built based on the Transformer-based

classification network, i.n., Hybrid Former [36]. We use

VolSA to replace the proposed spatial-spectral attention in

HybridFormer.

The classifiers used in the comparison are eight state-

of-the-art methods (SVM [42], DBMA [34], DBDA [28],

SSRN [66], SSFTT [40], BS2T [39], CS2DT [51] and Hy-

bridFormer [36]. All of the experiments presented in this

section are performed on RTX3090.

10.1. Dataset

The IP dataset was gathered by AVIRIS sensor over the In-

dian Pines test site in North-western Indiana and consisted

of 145×145 pixels and 220 bands. Removing 20 bands cov-

ering the region of water absorption, 200 bands are retained

for the classification task.

The SV dataset was collected by the 224-band AVIRIS

sensor over Salinas Valley, California, characterized by high

spatial resolution (3.7-meter pixels). Covering an area of

512 lines by 217 samples, similar to the Indian Pines scene.

This image was available only as at-sensor radiance data,

featuring vegetables, bare soils, and vineyard fields. The

Salinas ground truth contains 16 classes.

The HU2013 dataset was published in the 2013 IEEE

Geoscience and Remote Sensing Society data fusion con-

test, which is a relatively tricky benchmark dataset. The

dataset contains 15 land-cover types with 349×1905 pixels

and 144 spectral bands ranging from 380 to 1050 nm.

In the experiment, we initially preprocessed the datasets.

Subsequently, we select 5.5%, 0.5% and 3% of the sam-

ples for training in IP dataset and SV dataset and HU2013

dataset, with the remaining samples reserved for perfor-

mance evaluation.



Pavia (×4)

(a) Bicubic (b) MCNet (c) ERCSR (d) SSPSR (e) HSISR

(f) DSTrans (g) ESSA (h) CLSCNet (i) Ours (j) GT

Figure 10. Visual comparison for HSI SR on the representative test image from Pavia dataset with spectral bands 60-35-10 as R-G-B with

the scale factor 4.

(d) WLRTR

(g) QRNN3D (h) DPPR (j) Ours (k) GT

(c) KBR(b) BM4D

(a) Noisy

(e) NGmeet (f) HSID-CNN

(i) SST

Figure 11. Denoising results and error maps of the representative

image eve 0331-1549 under Gaussian noise with spectral bands

23-15-7 as R-G-B.

(d) WLRTR

(g) QRNN3D (h) DPPR (j) Ours (k) GT

(c) KBR(b) BM4D

(a) Noisy

(e) NGmeet (f) HSID-CNN

(i) SST

Figure 12. Denoising results and error maps of the representative

image eve 0331-1606 under Gaussian noise with spectral bands

23-15-7 as R-G-B.

(d) WLRTR

(g) QRNN3D (h) DPPR (j) Ours (k) GT

(c) KBR(b) BM4D

(a) Noisy

(e) NGmeet (f) HSID-CNN

(i) SST

Figure 13. Denoising results of image 46 under real-world noise

with spectral bands 23-15-7 as R-G-B.

10.2. Metrics
The classification performances of the proposed method

and the state-of-the-art methods are evaluated by the overall

accuracy (OA), average accuracy (AA), kappa coefficient

(Kappa) and the accuracy per class. All the quantitative re-

sults are presened in the form of mean value ± standard

deviation by choosing random samples and calculating the

result of ten times experiments.

10.3. Classification Experiment Results
Table 9 - Table 11 demonstrate the quantitative evaluation

results for IP, SV and HU2013 datasets. The best results

are highlighted in bold. The accuracy per class, OA, AA

and Kappa are respectively listed. It can be seen that our

method keeps the highest classification accuracy among all

the methods.

11. Limitation

Following the preview work [56], our VolFormer is also

trained based on HSI samples and RGBI samples together.

Numerous training samples ensure the stable learning pro-

cess of Transformer parameter distribution and achieve sig-

nificant performance. Especially for the natural HSI dataset

(i.e., CAVE), adding the processed RGB samples brought

significant gains. For example, HSISR obtains 0.7dB gains

in terms of PSNR than SSPSR on CAVE dataset. Compared

to those methods without using RGB samples, DSTrans and

our VolFormer also achieve more than 1dB gains. More-

over, as shown in Fig. 15(a), the quantitative results grad-

ually improved as the sample number increased. However,

in the remote sensing HSI dataset (i.e., Chikusei and Pavia),

the collaborative training strategy barely replicates the suc-

cess of CAVE. There is a more distinctive domain gap be-

tween the RGBI samples from DIV2K and the HSI sam-

ples from the remote sensing HSI dataset. For the Chikusei

dataset, the numerous RGBI samples bring limited perfor-



(d) WLRTR (g) QRNN3D (h) DPPR (j) Ours (k) GT(c) KBR(b) BM4D(a) Noisy (e) NGmeet (f) HSID-CNN (i) SST

Figure 14. Denoising results of image 48 under real-world noise with spectral bands 23-15-7 as R-G-B.

Class SVM DBMA DBDA SSRN SSFTT BS2T CS2DT HybridFormer Ours

1 99.42 ± 0.75 100.0 ± 0.00 100.0 ± 0.00 99.36 ± 0.68 99.99 ± 0.01 95.53 ± 5.53 100.0 ± 0.00 98.60 ± 1.27 93.02 ± 5.45

2 98.79 ± 0.37 99.07 ± 0.44 99.53 ± 0.42 99.83 ± 0.11 100.0 ± 0.00 97.53 ± 4.65 99.65 ± 0.43 95.76±1.67 97.57 ± 1.38

3 87.98 ± 3.76 97.41 ± 1.28 97.79 ± 1.57 95.01 ± 4.98 99.99 ± 0.01 99.06 ± 0.84 99.89 ± 0.14 97.28±1.33 97.30± 2.23

4 97.54 ± 0.59 92.39 ± 1.28 96.23 ± 1.07 96.91 ± 2.17 97.33 ± 1.10 93.93 ± 1.85 93.50 ± 3.16 96.17 ± 1.95 99.38± 0.75

5 95.09 ± 3.14 99.51 ± 0.28 99.23 ± 0.80 98.18 ± 1.93 99.96 ± 0.05 90.51 ± 8.84 98.58 ± 0.63 97.11 ± 1.68 96.45± 3.54

6 99.89 ± 0.08 99.83 ± 0.23 100.0 ± 0.00 99.92 ± 0.10 99.75 ± 0.20 100.0 ± 0.00 99.21 ± 1.05 98.50 ± 0.62 99.30± 0.59

7 95.59 ± 2.67 93.89 ± 4.56 98.63 ± 1.14 99.51 ± 0.86 99.46 ± 0.38 94.51 ± 3.12 99.96 ± 0.10 95.53 ± 6.08 100.00± 0.00

8 71.66 ± 2.54 94.00 ± 2.26 87.92 ± 1.03 88.52 ± 4.54 95.87 ± 0.63 90.58 ± 3.38 90.98 ± 2.83 100.00± 0.00 100.00± 0.00

9 98.08 ± 1.17 99.71 ± 0.33 99.26 ± 0.22 95.63 ± 7.56 99.99 ± 0.01 94.01 ± 5.68 99.53 ± 0.35 83.16±15.07 94.74± 7.44

10 85.39 ± 3.46 85.46 ± 8.47 96.67 ± 2.69 97.93 ± 1.30 98.81 ± 0.43 86.39 ± 7.50 98.20 ± 1.43 96.61 ± 1.51 97.02± 2.44

11 86.97 ± 6.81 89.98 ± 8.01 96.87 ± 2.21 83.51 ± 25.72 99.36 ± 0.66 75.53 ± 38.22 98.69 ± 1.61 97.27 ± 0.98 97.41± 1.28

12 94.20 ± 4.00 99.75 ± 0.27 98.94 ± 1.48 97.13 ± 3.15 99.23 ± 0.83 98.65 ± 0.99 99.83 ± 0.12 94.30 ± 3.55 96.57± 2.22

13 93.43 ± 3.31 96.56 ± 1.56 99.88 ± 0.09 98.19 ± 2.47 92.94 ± 3.29 99.86 ± 0.12 98.92 ± 1.55 99.28 ± 0.86 99.69 ± 0.46

14 92.03 ± 5.43 99.52 ± 0.28 96.67 ± 0.60 93.85 ± 6.14 91.15 ± 4.26 87.12 ± 5.78 92.76 ± 6.33 99.30 ± 0.90 99.40 ± 0.19

15 71.02 ± 5.59 75.77 ± 16.40 94.24 ± 0.71 80.35 ± 7.61 89.61 ± 0.94 76.27 ± 1.56 87.32 ± 5.00 98.04 ± 2.36 98.63± 1.19

16 97.81 ± 1.19 97.47 ± 1.88 100.0 ± 0.00 99.42 ± 0.58 99.68 ± 0.22 98.78 ± 2.40 99.99 ± 0.01 96.36±4.91 95.23± 4.28

OA 86.97 ± 0.86 91.43 ± 4.81 95.78 ± 0.03 92.43 ± 3.86 97.20 ± 0.25 90.85 ± 1.30 95.61 ± 0.78 97.29 ± 0.60 97.89± 0.36
AA 91.55 ± 0.62 95.02 ± 1.23 97.62 ± 0.12 95.20 ± 2.79 97.69 ± 0.36 92.39 ± 3.58 97.31 ± 0.48 96.45 ± 1.34 97.61± 0.30

Kappa 85.45 ± 0.97 90.52 ± 5.28 95.29 ± 0.04 91.58 ± 4.30 96.88 ± 0.28 89.82 ± 1.45 95.11 ± 0.86 96.92 ± 0.69 97.60± 0.41

Table 9. Classification results on the IP dataset. (Best results are shown in bold)

Class SVM DBMA DBDA SSRN SSFTT BS2T CS2DT HybridFormer Ours

1 99.42 ± 0.75 100.0 ± 0.00 100.0 ± 0.00 99.36 ± 0.68 99.99 ± 0.01 95.53 ± 5.53 100.00 ± 0.00 0 99.78 ± 0.34 99.90 ± 0.17

2 98.79 ± 0.37 99.07 ± 0.44 99.53 ± 0.42 99.83 ± 0.11 100.0 ± 0.00 97.53 ± 4.65 99.65 ± 0.43 99.99 ± 0.01 100.00.0 ± 0

3 87.98 ± 3.76 97.41 ± 1.28 97.79 ± 1.57 95.01 ± 4.98 99.99 ± 0.01 99.06 ± 0.84 99.89 ± 0.14 95.02 ± 11.12 97.45 ± 3.57

4 97.54 ± 0.59 92.39 ± 1.28 96.23 ± 1.07 96.91 ± 2.17 97.33 ± 1.10 93.93 ± 1.85 93.50 ± 3.16 99.77 ± 0.18 98.75 ± 2.57

5 95.09 ± 3.14 99.51 ± 0.28 99.23 ± 0.80 98.18 ± 1.93 99.96 ± 0.05 90.51 ± 8.84 98.58 ± 0.63 97.67 ± 1.12 97.74 ± 1.41

6 99.89 ± 0.08 99.83 ± 0.23 100.0 ± 0.00 99.92 ± 0.10 99.75 ± 0.20 100.0 ± 0.00 99.21 ± 1.05 99.43 ± 1.02 99.55 ± 0.91

7 95.59 ± 2.67 93.89 ± 4.56 98.63 ± 1.14 99.51 ± 0.86 99.46 ± 0.38 94.51 ± 3.12 99.96 ± 0.10 99.95 ± 0.11 99.89 ± 0.18

8 71.66 ± 2.54 94.00 ± 2.26 87.92 ± 1.03 88.52 ± 4.54 95.87 ± 0.63 90.58 ± 3.38 90.98 ± 2.83 94.87 ± 2.62 95.24 ± 2.38

9 98.08 ± 1.17 99.71 ± 0.33 99.26 ± 0.22 95.63 ± 7.56 99.99 ± 0.01 94.01 ± 5.68 99.53 ± 0.35 100.00 ± 0 100.0 ± 0.00

10 85.39 ± 3.46 85.46 ± 8.47 96.67 ± 2.69 97.93 ± 1.30 98.81 ± 0.43 86.39 ± 7.50 98.20 ± 1.43 97.61 ± 1.25 98.18 ± 1.56

11 86.97 ± 6.81 89.98 ± 8.01 96.87 ± 2.21 83.51 ± 25.72 99.36 ± 0.66 75.53 ± 38.22 98.69 ± 1.61 99.79 ± 0.41 99.71 ± 0.63

12 94.20 ± 4.00 99.75 ± 0.27 98.94 ± 1.48 97.13 ± 3.15 99.23 ± 0.83 98.65 ± 0.99 99.83 ± 0.12 99.43 ± 0.76 99.98 ± 0.02

13 93.43 ± 3.31 96.56 ± 1.56 99.88 ± 0.09 98.19 ± 2.47 92.94 ± 3.29 99.86 ± 0.12 98.92 ± 1.55 99.98 ± 0.05 99.86 ± 0.29

14 92.03 ± 5.43 99.52 ± 0.28 96.67 ± 0.60 93.85 ± 6.14 91.15 ± 4.26 87.12 ± 5.78 92.76 ± 6.33 99.23 ± 0.74 99.45 ± 0.62

15 71.02 ± 5.59 75.77 ± 16.40 94.24 ± 0.71 80.35 ± 7.61 89.61 ± 0.94 76.27 ± 1.56 87.32 ± 5.00 93.06 ± 3.80 98.36 ± 1.55

16 97.81 ± 1.19 97.47 ± 1.88 100.0 ± 0.00 99.42 ± 0.58 99.68 ± 0.22 98.78 ± 2.40 99.99 ± 0.01 99.76 ± 0.43 99.06 ± 1.27

OA 86.97 ± 0.86 91.43 ± 4.81 95.78 ± 0.03 92.43 ± 3.86 97.20 ± 0.25 90.85 ± 1.30 95.61 ± 0.78 97.45 ± 0.66 98.35 ± 0.47
AA 91.55 ± 0.62 95.02 ± 1.23 97.62 ± 0.12 95.20 ± 2.79 97.69 ± 0.36 92.39 ± 3.58 97.31 ± 0.48 98.46 ± 0.72 98.95 ± 0.36

Kappa 85.45 ± 0.97 90.52 ± 5.28 95.29 ± 0.04 91.58 ± 4.30 96.88 ± 0.28 89.82 ± 1.45 95.11 ± 0.86 97.89 ± 0.55 98.63 ± 0.39

Table 10. Classification results on the SV dataset. (Best results are shown in bold)

mance gains (as shown in Fig. 15(b)). Even more, for the

Pavia dataset, the numerous RGBI samples result in a neg-

ative impact on super-resolution performance, as shown in

Fig. 15(c). The size of the Pavia dataset is smaller than



Class SVM DBMA DBDA SSRN SSFTT BS2T CS2DT HybridFormer Ours

1 94.74 ± 2.32 96.53 ± 1.22 95.57 ± 1.46 98.58 ± 0.16 96.57 ± 0.45 96.00 ± 1.02 95.81 ± 2.35 96.51 ± 2.66 98.87 ± 1.91

2 96.44 ± 1.49 99.44 ± 0.13 99.47 ± 0.14 99.81 ± 0.18 98.45 ± 0.68 98.61 ± 1.14 98.46 ± 1.00 99.13 ± 1.14 97.92 ± 0.59

3 98.16 ± 1.40 99.45 ± 0.77 100.0 ± 0.00 99.87 ± 0.24 99.77 ± 0.13 99.96 ± 0.06 99.95 ± 0.09 99.44 ± 0.56 99.79 ± 0.16

4 97.65 ± 1.40 99.01 ± 0.72 97.55 ± 0.97 98.59 ± 1.10 99.06 ± 0.75 99.50 ± 0.51 94.73 ± 1.90 99.44 ± 0.57 99.46 ± 0.49

5 93.00 ± 2.04 98.35 ± 1.55 96.61 ± 2.71 98.10 ± 1.45 100.0 ± 0.00 99.86 ± 0.27 97.07 ± 2.60 100.0 ± 0.00 99.95 ± 0.11

6 98.57 ± 1.82 99.13 ± 1.22 100.0 ± 0.00 98.73 ± 2.52 98.17 ± 1.37 100.0 ± 0.00 99.02 ± 1.68 88.70 ± 9.11 97.07 ± 2.64

7 86.08 ± 2.97 90.77 ± 1.95 92.75 ± 1.34 93.64 ± 3.65 93.78 ± 1.34 95.49 ± 1.09 94.89 ± 2.37 97.80 ± 0.90 98.01 ± 0.76

8 80.90 ± 2.47 97.16 ± 0.42 97.75 ± 1.53 98.40 ± 1.75 91.82 ± 0.75 99.78 ± 0.26 95.73 ± 2.91 87.49 ± 5.16 89.62 ± 3.01

9 74.64 ± 3.56 87.18 ± 4.20 93.70 ± 2.37 93.35 ± 3.19 91.35 ± 1.53 93.17 ± 2.18 93.81 ± 3.02 93.25 ± 2.46 94.51 ± 4.54

10 83.11 ± 3.94 91.73 ± 3.09 90.78 ± 2.91 91.70 ± 5.16 97.91 ± 1.49 93.45 ± 1.84 88.84 ± 2.88 98.37 ± 1.67 97.88 ± 2.63

11 81.27 ± 2.51 92.41 ± 0.60 92.07 ± 4.55 91.47 ± 1.16 98.05 ± 1.06 97.25 ± 1.09 92.59 ± 4.06 97.83 ± 2.35 99.16 ± 1.21

12 76.29 ± 3.79 95.45 ± 0.41 88.43 ± 1.98 91.17 ± 2.41 90.70 ± 1.26 94.61 ± 1.15 92.13 ± 5.07 94.16 ± 3.83 95.66 ± 3.71

13 63.57 ± 10.27 93.64 ± 1.57 90.03 ± 3.65 88.86 ± 4.58 96.54 ± 2.17 90.60 ± 1.70 95.83 ± 5.11 89.85 ± 6.89 94.32 ± 6.51

14 93.77 ± 4.56 98.39 ± 1.13 98.50 ± 1.62 91.78 ± 5.35 99.68 ± 0.18 98.15 ± 1.91 100.0 ± 0.00 100.0 ± 0.00 99.95 ± 0.10

15 99.21 ± 0.51 98.24 ± 0.25 97.92 ± 1.25 99.46 ± 0.66 100.0 ± 0.00 96.90 ± 1.55 97.51 ± 1.40 99.28 ± 0.79 99.87 ± 0.27

OA 87.47 ± 0.66 95.17 ± 0.29 94.83 ± 0.54 95.44 ± 0.57 96.32 ± 0.28 96.76 ± 0.37 94.95 ± 0.71 96.40 ± 0.30 97.35 ± 0.30
AA 87.83 ± 0.94 95.79 ± 0.28 95.41 ± 0.54 95.57 ± 0.55 96.79 ± 0.27 96.89 ± 0.35 95.76 ± 0.62 96.08 ± 0.79 97.47 ± 0.47

Kappa 86.44 ± 0.71 94.78 ± 0.31 94.41 ± 0.58 95.07 ± 0.62 96.03 ± 0.31 96.50 ± 0.41 94.54 ± 0.77 96.11 ± 0.33 97.13 ± 0.33

Table 11. Classification results on the HU2013 dataset. (Best results are shown in bold)

the CAVE and Chikusei datasets. In the beginning, a small

amount of RGBI samples are introduced to enrich the train-

ing set and lead to positive feedback. With the increase of

RGBI samples, the influence of the domain gap is ampli-

fied, resulting in performance drops. Therefore, for differ-

ent scales and types of HSI datasets, the effectiveness of

RGBI samples is varied. Especially for the small-scale (far

smaller than Pavia ) remote sensing HSI dataset, the lim-

ited samples would lead to the limited performance of the

Transformer network.

12. Ablation Studies

Discussion of the TB Number, TL Number and Atten-
tion Head Number. We show the effects of the TB number,

TL number and attention head number on the model’s per-

formance in Fig. 16(a), Fig. 16(b) and Fig. 16(c). The MP-

SNR is positively correlated with the TB number and TL

number. As the TB number and TL number increase, the

performance gain gradually becomes saturated. Meanwhile,

the MPSNR is positively correlated with a small number

of attention heads. When the attention head number does

not exceed 6, the performance gain gradually. While the

attention head number exceeds 12, the performance of Vol-

Former drops. To balance the performance and model size,

the TB , TL and attention head number were set to 8, 6 and

6 to obtain a relatively effective and small model.

Discussion of the Computational Cost. We have con-

ducted a comparison of the parameters and computational

cost for our model with SOTA methods across various

super-resolution tasks in detail shown in Table 12. The in-

put HSI is 1×128×16×16, and 4× and 8× super-resolution

tasks are employed.



(a)  CAVE (b)  Chikusei (c)  Pavia 

Figure 15. The performance with different ratios of the RGBI samples among different datasets.
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Figure 16. Ablation study on different settings of TB number, TL number and attention head number.

Scale MCNet ERCSR HSISR DSTrans ESSA VolFormer

FLOPs ×4
289.26 287.74 203.23 137.63 50.45 90.15

Params 2.17 1.59 18.11 25.20 11.64 5.10

FLOPs ×8
2637 2691 761.90 166.05 199.07 120.29

Params 2.96 2.38 20.47 25.34 14.14 5.74

Table 12. Comparisons of computational cost and parameters.


