
WonderWorld: Interactive 3D Scene Generation from a Single Image

Supplementary Material

A. Overview
In this supplementary material, we show the following con-
tents:
• Algorithms of WonderWorld (B)
• Details on guided depth diffusion (C)
• Further implementation details (D)
• Additional experiment results (E)
We also compile video results and interactive viewing ex-
amples of the generated virtual worlds in https://
kovenyu.com/WonderWorld/. We strongly encour-
age the reader to view the project website.

B. Algorithms
We summarize the control loop of WonderWorld in Alg. 1
and the generation of FLAGS in Alg. 2 and Alg. 3.

C. Details on Guided Depth Diffusion

Accelerated depth guidance implementation. In our
guided depth diffusion, we empirically observe that we do
not need to use guidance in every denoising step. We set
the guidance weights st such that the norm of the guidance
signal is proportional to the norm of the predicted update.
We use the Euler scheduler [26] with 30 steps for our depth
diffusion, where we apply our guidance in only the last 8
steps. This significantly reduces runtime latency.
Relation to other guidance methods. The guidance tech-
nique has been used in sampling diffusion models with dif-
ferent guidance signals, such as text [19], features [12], and
decoded features [39]. Yet, their goal is to control the seman-
tic contents of generated images. Our guided depth diffusion
targets a problem different from controllable image genera-
tion; we aim to estimate consistent depth that aligns with the
existing depth geometry.
Tackling ground plane distortion. We note that our guided
depth diffusion formulation is highly flexible and allows
us to specify different depth constraints. For example, a
significant geometric distortion is that the ground plane is
often curved due to inaccurate camera intrinsic matrix and
depth estimation. Thus, we add depth guidance for the
ground plane by replacing the mask Mguide in Eq. 9 with a
ground mask Mgrd obtained from semantic segmentation,
and replacing the depth of visible content Dguide with an
analytically calculated flat ground depth Dgrd. To compute
depth, we assume the height difference Hcam between the
camera and the ground; then the depth of a ground pixel is
Hcamfy/(py − y), where fy is the focal length, y is the pixel
y-coordinate, py is the y-principal point.

D. Further Experiment Details

Real photos. In our experiments, we use both real photos
and synthetic stylized images. The following results use real
photos as input: (I) “Holy Spirit Cathedral”, “Ho Chi Minh
City Hall”, and “Marienplatz” in the Interactive Scene Gen-
eration section of the project website; (II) “Venice”, “Main
Square”, “University Campus”, “Arc de Triomf”, “Segovia
Cathedral”, “Westlake”, and “University Pathway” in the
Generated Virtual World section of the project website;
(III) The top example (“Venice”) and bottom right example
(“Main Square”) in Fig. 1, the left example in Fig. 5, the
3rd example in Fig. 10, the 1st example in Fig. 11, the 1st
example in Fig. 12, and the left example in Fig. 15.

Further implementation details. In single-view layer gen-
eration, we use an LLM to generate a structured scene de-
scription (Eq. 4). We use GPT-4 for this purpose, and the
instruction prompt J is:

“You are an intelligent scene generator. Imagine you
are wandering through a scene or a sequence of scenes,
and there are 3 most significant common entities in each
scene. The next scene you would go to is U . Please generate
the corresponding 3 most common entities in this scene.
The scenes are sequentially interconnected, and the entities
within the scenes are adapted to match and fit with the scenes.
You must also generate a brief background prompt of about
50 words describing the scene. You should not mention the
entities in the background prompt. If needed, you can make
reasonable guesses. Please use the format below (the output
should be JSON format): ’scene name’: [’scene name’],

’entities’: [’entity 1’, ’entity 2’, ’entity 3’], ’background’:
[’background prompt’]”,
where U is the user text input to specify the scene name.
To generate the text prompt T in Eq. 4 for the first scene
for inpainting the background layer and sky layer, we use a
similar instruction to prompt the VLM (we use GPT-4V) to
caption the input image, with the difference that we also ask
the VLM to generate a style prompt S . Then, we keep using
the same style prompt S in Eq. 4 for the whole generation
process. The “scene name” above is used to prompt the
LLM to generate the next scene description. The “entities”
above is used as the foreground prompt F in Eq. 4, and the
“background prompt” is used as B in Eq. 4.

All generated scene images are 512 × 512 pixels. We
set the camera focal length to fx = fy = 960 pixels for all
scenes, while it is also possible to use off-the-shelf meth-
ods [24] for estimation. We post-process estimated depth
using an efficient SAM [30, 38], similar to WonderJour-
ney [67]. In practice, we generate the entire sky in the initial

https://kovenyu.com/WonderWorld/
https://kovenyu.com/WonderWorld/


Algorithm 1 WonderWorld control loop

Input: Initial scene image I0
Output: All generated scenes G = {E0, E1, . . .}
Runtime output: Real-time rendered image Irend
Runtime user control: Real-time camera pose Crend, generation camera pose Cgen, (optional) user text prompt U

1: Crend ← 4x4 Identity matrix ▷ Initialize at origin
2: Cgen ← 4x4 Identity matrix ▷ Initialize at origin
3: Iscene ← I0
4: M← 1H×W ▷ Mask indicating which pixels are the current new scene
5: T ← Captioning by VLM(Iscene) ▷ We use GPT4V
6: G ← Generate FLAGS(Iscene,M, T , ∅) ▷ Alg. 2
7: in parallel do
8: Thread 1: Main control loop ▷ Async with generation
9: while true do

10: Irend ← Render(Crend,G)
11: Crend ← Update by user(Crend) ▷ User can move, rotate, or stay static
12: end while
13: end parallel
14: in parallel do
15: Thread 2: Async generation signal (triggered event)
16: Cgen ← Crend
17: Ipartial ← Render(Cgen,G) ▷ Partial rendered image
18: M← Find empty pixels(Ipartial)
19: if U is empty then
20: U ← Propose by LLM() ▷ We use GPT4 to propose a new scene name
21: T ← Generate by LLM(U) ▷ Eq. 4
22: else
23: T ← Generate by LLM(U) ▷ Eq. 4
24: end if
25: Iscene ← Outpaint(Ipartial,M,U)
26: G ← Generate FLAGS(Iscene,M, T ,G) ▷ Alg. 2
27: end parallel

Algorithm 2 Generate FLAGS

Input: Scene image Iscene, mask of new pixels M, full
text prompt T = {F ,B,S}, existing scenes G
Output: Extended scenes G

1: Ifg, Ibg, Isky,Mfg,Mbg,Msky ←
Generate layer images(Iscene, {F ,B,S}) ▷ Sec. 3.1

2: Minit ←M⊙Msky
3: Lsky ← Optimize layer(Isky,G,Minit) ▷ Alg. 3
4: G ← G ∪ Lsky ▷ Add Lsky to the frozen G
5: I′bg ←Mbg ⊙ Ibg + (1−Mbg)⊙ Isky
6: Minit ←M⊙Mbg
7: Lbg ← Optimize layer(I′bg,G,Minit) ▷ Alg. 3
8: G ← G ∪ Lbg
9: Minit ←M⊙Mfg

10: Lfg ← Optimize layer(Iscene,G,Minit) ▷ Alg. 3
11: G ← G ∪ Lfg

Algorithm 3 Optimize a FLAGS layer

Input: Reference image Iref, existing scenes G, mask
Minit to indicate which pixels are used to spawn surfels
for this layer
Output: Layer L

1: Dguide,Mguide ← Render partial depth(Cgen,G)
2: Dscene ← Guided depth diffusion(Iref,Dguide,Mguide)

▷ Sec. 3.2
3: N← Estimate normal(Iref)
4: P,C← Unproject pixels(Iref,Dscene,Mguide) ▷ Eq. 6
5: S← Compute scales(Dscene,N,K) ▷ Eq. 8
6: L ← Initialize layer(P,N,C,S,Minit)
7: L ← Optimize layer(L,G, Iref) ▷ Sec. 3.1

scene using SyncDiffusion [32] offline. To render the guid-
ance mask Mguide, we first render the FLAGS into the screen
space, and accumulate the opacity. Then, we threshold the



Figure 9. Screenshot of human study survey.

accumulated opacity by 0.6 to find the visible mask Mguide.
We use the same method to find empty pixels in the partial
rendered image Ipartial.

Human study details. We use Prolific to recruit participants
for the human preference evaluation. For each experimental
comparison, we recruit 204 participants from all over the
globe. We use Google forms to present the survey. The
survey is fully anonymized for both the participants and the
host. Participants are shown top-by-bottom bird-eye render-
ing images of the same layout as in Fig. 5 with randomized
top-bottom orders. For the ablation study, participants are
shown side-by-side images. Participants are instructed to se-
lect one from two options: “Top is more visually compelling”
or “Bottom is more visually compelling” The instruction
is: “Carefully compare the two images below. Which image
looks better (higher quality, fewer errors) to you?”

Since we compare to three baseline methods, each ex-
ample forms three pairs. We use the four examples shown
in Figure 5 and Figure 15, yielding 12 pairs in total. Each
participant answers all 12 questions. We show a screenshot
in Figure 9.

Depth estimation for baseline methods. For a fairer com-
parison, we also use Marigold for WonderJourney [67] in our
experiments. Yet, LucidDreamer [8] requires metric depth,
and Text2Room [20] requires depth inpainting, so we keep
their original depth models.

Table 5. Time analysis for WonderWorld in generating a single
scene on an A6000 GPU.

Outpainting Layer generation Depth Normal Optim.

2.1s 2.3s 2.5s 0.8s 1.9s

Table 6. Comparison of different depth alignment methods on our
examples. The metric is the scale-invariant root mean square error
(SI-RMSE) between the estimated depth and the existing depth.

w/o guided depth diffusion Shift+Scale Guided depth diffusion (ours)

0.36 0.21 0.08

E. Additional Results
We show additional baseline comparison results in Figure 15.
We show additional qualitative results in Figure 11, 10, 12.
To automate generation, we also use the panoramic camera
paths. We use the LLM to generate the scene names.

We show different scenes using the same input image in
Figure 13, and different styles in the same virtual world in
Figure 14. In Table 5, we show a time analysis of Wonder-
World for generating a single extrapolated scene.
Additional ablation study on guided depth diffusion. In
Table 6, we show an ablation on guided depth diffusion. Be-
sides “w/o guided depth diffusion” which does not have any
treatment to align depth estimations, we further include a
heuristic-based method “Shift+Scale” which uses the least
square to solve for a shift value and a scale value that trans-
forms the estimated depth to align with the existing depth.
We use the same protocol as in the baseline comparison and
main paper ablation study. We report the scale-invariant root
mean square error (SI-RMSE) between the estimated depth
and the visible existing depth. From Table 6, we observe that
our guided depth diffusion provides much better alignment
than the two variants.



Input image Generated 3D scenes

“Church Tower”
“Woodland Trail”

“Field”

“Apple Orchard”

“Market Place”
“Flower Garden”

“Streetlamp”

“Winding Path”

Input image Generated 3D scenes

“Village Market”
“Winding Path”

“Countryside”

“Oak Trees”

“Lakeside”
“Clifftop Ruins”

“Palm Trees”

“Cabin”

“Italian Cypress”
“Historic Building”

“Courtyard”

“Lake”

“Library Exterior”
“Art Gallery”

“Campus Party”

“Coffee House”

Input image Generated 3D scenes

Input image Generated 3D scenes

“Sunlit Library”
“College Quad”

“Campus Tower”

“Fountain Statue”

“Science Auditorium”
“Art Studio”

“Sports Field”

“Music Band”

Figure 10. Qualitative examples. Each generated world consists of 9 scenes. The text prompts are generated by the LLM.



“Tree”
“Ancient Library”

“Serene Courtyard”

“Garden”

“Oak Trees”
“Study Spot”

“Campus Cafe”

“Campus Bookstore”

Input image Generated 3D scenes

“Village”
“Cave”

“Mountain”

“Ancient Spire”

“Thatched House” “Temple of 
Ancient Secret”

“Cobblestone Road”

“Bush”

Input image Generated 3D scenes

“Marketplace”
“Forest”

“Countryside”

“River”

“Moonlit Pagoda”
“Seaside”

“Winter Snow”

“Snowy Mountain”

Input image Generated 3D scenes

“Temple of Heaven”
“Imperial Garden”

“Tea Garden”

“Monastery”

“Summer Palace”
“Tea House”

“Garden Path”

“Courtyard”

Input image Generated 3D scenes

Figure 11. Qualitative examples. Each generated world consists of 9 scenes. The text prompts are generated by the LLM.



“Sand Beach”
“Alpine Village”

“Harbor”

“Market Place”

“Barn”
“Lake”

“Church”

“Shoreline”

Input image Generated 3D scenes

Input image Generated 3D scenes

“Street”
“Park”

“Central square”

“Garden”

“Public Library”
“Café House”

“Market”

“Cathedral”

Input image Generated 3D scenes

“Market”
“Theme Park”

“Campus”

“Downtown”

“Lake”
“Park”

“Garden”

“Path”

Input image Generated 3D scenes

“Grassland”
“Meadow”

“Central Square”

“Riverside”

“Indian Street”
“Market Place”

“Winding Path”

“Campus”

Figure 12. Qualitative examples. Each generated world consists of 9 scenes. The text prompts are generated by the LLM.



“Cabin”
“Tree”

“Bonsai”

“Cabin”

“Stream”
“Meadow”

“Woodlands”

“Volcano”

Input image

Generated 3D scenes

“Riverside”
“Forest”

“Bush”

“Lake”

“Campus”
“Market”

“Town Square”

“Farm”

Generated 3D scenes

Figure 13. Diverse generation: Our WonderWorld allows generating different virtual worlds from the same input image.

Style: Painting
Content: Bush

Style: Minecraft
Content: Village

Style: Painting
Content: Market

Style: Painting
Content: Campus

Input image Generated 3D scenes with different visual styles

Style: Minecraft
Content: Mountain Style: Lego

Content: Skyscraper
Style: Lego

Content: Countryside

Style: Lego
Content: House

Figure 14. WonderWorld allows users to specify different styles in the same generated virtual world, e.g., Minecraft, painting, and Lego
styles.



WonderWorld (Ours)

LucidDreamer

WonderJourney

WonderWorld (Ours)

LucidDreamer

WonderJourney

Text2room Text2room

Figure 15. Baseline comparison. The inset with blur dashed bounding box is the input image.


	. Introduction
	. Related Work
	. Approach
	. Fast LAyered Gaussian Surfels (FLAGS)
	. Guided Depth Diffusion

	. Experiments
	. Results
	. Ablation study

	. Conclusion
	. Overview
	. Algorithms
	. Details on Guided Depth Diffusion
	. Further Experiment Details
	. Additional Results



