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1. Methods Supplementary
1.1. Aggregation role of ReID loss functions
Currently, ReID models commonly use cross-entropy loss
to impose ID-level constraints, and contrastive losses (such
as triplet loss) to bring features of the same ID closer while
pushing apart features of different IDs. Some models also
utilize center loss to construct identity centers for dynami-
cally constraining the IDs. These methods lead to one com-
mon result: feature aggregation. From the perspective of
the gradient of the loss functions, we could prove that the
feature vectors of each ID in current ReID tasks naturally
aggregate around a center or mean in the followings.

Cross-Entropy Loss is often used in classification tasks,
optimizing the model by maximizing the probability of
the correct class. Given N samples, each with a feature
vector zi ∈ Rd, and its corresponding class label yi ∈
{1, 2, . . . , C}, the cross-entropy loss is defined as:

LCE = − 1

N

N∑
i=1

log
exp(w⊤

yi
zi + byi)∑C

j=1 exp(w
⊤
j zi + bj)

(1)

where wj and bj are the weight vector and bias for class j,
respectively.

For simplicity, assume that the final layer is a linear clas-
sifier without bias, i.e., bj = 0. When the loss is minimized,
the optimization objective is to maximize the score w⊤

yi
zi of

the correct class while minimizing the scores w⊤
j zi of other

classes (j ̸= yi).
By gradient descent optimization, we can obtain:

∂LCE

∂zi
= 1/N (pyi

− 1)wyi
+ 1/N

∑
j ̸=yi

pijwj (2)

where pij =
exp(w⊤

j zi)∑C
k=1 exp(w⊤

k zi)
.

With the loss function converges, pyi → 1 and pij →
0(j ̸= yi). The feature zi is optimized to be near a linear
combination of the class weight vectors wyi

. This indicates
that features of the same class will tend toward a common
direction, thus achieving feature aggregation.

Contrastive loss (Triplet Loss as example) optimizes the
feature space by bringing samples of the same class closer
and pushing samples of different classes further apart. A
triplet (za, zp, zn) is defined, where za is the anchor, zp

is the positive sample (same class), and zn is the negative
sample (different class). The triplet loss is defined as:

LTriplet = max
(
∥za − zp∥22 − ∥za − zn∥22 + α, 0

)
(3)

where α is the margin parameter.
To minimize the loss, the optimization objective is:

∥za − zp∥22 + α < ∥za − zn∥22 (4)

∂LTriplet

∂za
= 2(zn − zp), (5)

∂LTriplet

∂zp
= 2(zp − za), (6)

∂LTriplet

∂zn
= 2(za − zn). (7)

By minimizing triplet loss, the feature zp is pulled closer
to za, while zn is pushed away. Through this mechanism,
Triplet Loss encourages features of the same class to ag-
gregate together while features of different classes are sep-
arated from each other.

Center loss further enhances feature aggregation by in-
troducing a feature center for each class. For each class j,
there is a feature center cj , and the center loss is defined as:

LCenter =
1

2

N∑
i=1

∥zi − cyi∥22 (8)

The goal of minimizing center loss is to make each sam-
ple’s feature vector zi as close as possible to its correspond-
ing class center cyi

. Through gradient descent, we obtain:

∂LCenter

∂zi
= zi − cyi (9)

∂LCenter

∂cj
=

{
cj − zi if yi = j

0 otherwise
(10)

Thus, the optimization process not only pulls sample fea-
tures closer to their centers but also dynamically updates
each class’s center to represent the mean of that class’s fea-
ture distribution. This directly encourages features of the
same class to aggregate together.



1.2. Identity Density (ID2) Metric
Identity density is one aspect of measuring ReID effec-
tiveness. However, there is currently no quantitative met-
ric for this, and researchers commonly rely on visualiza-
tion tools like t-SNE to demonstrate model performance.
Due to the large number of IDs, this approach is limited
to visualizing only a few IDs, making it challenging to as-
sess model performance from a global perspective quantita-
tively. Some researchers exploit this limitation by selecting
the best-performing IDs of their models for visualization.
To address this, we propose an Identity Density (ID2) Met-
ric. This metric evaluates the global ID aggregation per-
formance by taking each ID center across the entire test set
(gallery and query) as a benchmark.

ID2 =
1

N

N∑
i=1

1

ni

ni∑
j=1

d

(
fij

∥fij∥2
, ci

)
(11)

where N is the total number of unique IDs in the test set,
and ni is the number of samples for ID i. The feature vector
of the j-th sample of ID i is denoted as fij , and ci represents
the identity center of ID i, computed as follows:

ci =
1

ni

ni∑
j=1

fij
∥fij∥2

(12)

Both the feature vectors fij and the identity centers ci
are L2-normalized to ensure consistent feature scaling. The
function d(·, ·) represents the Euclidean distance.

1.3. Pose Encoder Details
The Pose Encoder module is designed to extract high-
dimensional pose embeddings from the input poses.

Epose = PoseEncoder(xpose) (13)

The input is a feature map of size Cin × H × W , de-
noted as xpose, where Cin is the number of input channels,
and H,W are the height, and width of the input. The first
convolution layer is defined as:

E0 = SiLU(Convin(x
pose)) (14)

where Convin is a convolution operation with kernel size
3× 3, and the number of channels changes from Cin = 3 to
C0 = 16:

Each block applies a normal 3 × 3 Conv, a 3 × 3 Conv
with stride 2 to reduce spatial dimensions, and followed by
a SiLU activate function. For the i-th convolutional block,
the operations can be expressed as:

Ei+1 = SiLU(Convi,stride=2(Convi(Ei))) (15)

The number of channels for each block is as follows:
[C0, C1, C2, C3] = [16, 32, 64, 128]

The output Conv layer maps the features from the last
block to the target embedding dimension Cout = 320, ex-
pressed as:

Epose = Convout(E4) (16)

1.4. Detailed Description of Neighbor Feature Cen-
tralization (NFC)

Step 1: Compute Distance Matrix Given all feature vec-
tors in the gallery {zi}Ni=1, our goal is to enhance each fea-
ture vector by aggregating features from its mutual nearest
neighbors. Compute the pairwise distance matrix D = [dij ]
where dij represents the distance between features zi and
zj . To avoid self-matching, set the diagonal elements to a
large constant, i.e.

dii = C, for i = 1, 2, . . . , N

Step 2: Find Top k1 Nearest Neighbors For each feature
zi, find its top k1 nearest neighbors based on the distance
matrix D. Denote the set of indices of these neighbors as:

Ni = TopKk1
({dij}Nj=1) (17)

Step 3: Identify Mutual Nearest Neighbors For each
feature zi, identifies its mutual nearest neighbors by check-
ing whether each neighbor in Ni also considers zi as one of
its top k2 nearest neighbors. Specifically, for each j ∈ Ni,
checks if i ∈ N k2

j , where N k2
j is the set of indices of the

top k2 nearest neighbors of zj . If this condition is satisfied,
add j to the mutual nearest neighbor set Mi:

Mi = {j | j ∈ Ni, i ∈ N k2
j } (18)

Step 4: Feature Centralization Enhancement Then it
could centralize each feature vector zi by aggregating the
features of its mutual nearest neighbors:

zcentralized
i = zi +

∑
j∈Mi

zj (19)

This aggregation reduces feature noise and improves dis-
criminability by incorporating information from similar fea-
tures.

2. Experiments Supplementary
2.1. Data Cleansing
Training an effective generative model requires high-quality
data support. In current ReID (Person Re-Identification)
datasets, there are many low-quality images, and remov-
ing them can help reduce interference to the model. In our
experiments, we found two main issues that need to be ad-
dressed: Extremely Low-quality Images: The dataset con-
tains images with such low resolution that even the human
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Figure 1. ReID results with images generated with the same pose
on Market1501.

Figure 2. Impact of the quality coefficient η with TransReID on
Market1501. The dark color lines are the baseline.

Figure 3. k1/k2 analysis of Neighbor Feature Centralization
(NFC) with TransReID on Market1501 without re-ranking.

eye cannot recognize them as a ”person”. Pose Estimation
Failures: The pose estimation model inevitably fails to de-
tect pedestrian poses in some images.

2.1.1. Extremely Low-quality Images
To address this, manual filtering is impractical. Therefore,
we designed an automated filtering algorithm. We leverage
normal distribution of feature vector, if the feature on the

edge of the distribution, largely due to the data itself is out
of the distribution of its identity, and it can be picked up.

Let fi ∈ Rd denote the feature vector of the i-th sample
of a particular identity, where d is the feature dimension.
The mean vector µ and covariance matrix Σ are computed
as follows:

µ =
1

N

N∑
i=1

fi, Σ =
1

N

N∑
i=1

(fi − µ)(fi − µ)⊤ (20)

where N is the number of samples for a given ID.
To detect outliers, we compute the Mahalanobis distance

di of each feature vector fi from the mean vector µ, defined
as:

disi =

√
(fi − µ)⊤Σ−1(fi − µ) (21)

Given that the feature vectors are assumed to follow a
multivariate normal distribution, we use quantiles of the
Mahalanobis distance to filter out outliers. Specifically, we
define a lower bound Qp and an upper bound Q1−p based
on the p-th and (1 − p)-th quantiles, respectively. Samples
with distances outside this range are considered outliers and
are removed, and can get a set Sref

i for ith ID:

Sref
i = {xi | disi ∈ [Qp, Q1−p]} (22)

2.1.2. Pose Filtering for ’Failed’ Pose Estimation
We designed a pose filtering algorithm called PoseValid
to eliminate cases where pose extraction has ”completely
failed.” This algorithm checks the validity of the pose key-
points based on factors such as occlusion, keypoint posi-
tions, angles, and limb proportions, then get the set of valid
poses.

Strg
i = {xi | PoseValid(xi) and disi ∈ [Qp, Q1−p]} (23)

where the pose detector in this paper uses pretrained model
of DWpose[26]. Given a set of keypoints representing a
pose, we normalize the pose using the following steps:
1. Compute the body height (h):

Calculate the Euclidean distance between the Neck (key-
point 1) and the Left Hip (keypoint 11):

h = ∥kNeck − kLHip∥

2. Translate the pose:
Shift all keypoints so that the Neck is at the origin:

k′
i = ki − kNeck

3. Scale the pose:
Divide each keypoint by the body height to normalize
the size:

knormalized
i =

k′
i

h
Then, the filtering process of PoseValid function evaluates
the validity of pose keypoints by applying constraints on
limb lengths, symmetry, and keypoint positions.
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Figure 4. More random generated images on three datasets.
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Figure 5. Some outliers detected via the mechanism formulated
as Equation.22 on Market1501 and SYSU-MM01 with quartile
0.005.

+Ours +Rerank mAP Rank1
✗ ✗ 79.88 91.48
✗ ✓ 89.56 92.07
✓ ✗ 90.39 94.74
✓ ✓ 92.79 94.83

Table 1. Compared to k-reciprocal rerank with official settings on
Market1501 (k1=20,k2=6).

Methods mAP Rank1
TransReID on MSMT17 67.80 85.33

+ours 74.06 86.55

Table 2. Experiment on MSMT17 with TransReID and their offi-
cial weights.

2.2. Generation quality and Pose Representation
Study

To assess the quality of the generated images, we replaced
the real images in the dataset with images of the same pose
and performed inference validation. The results, as shown
in Fig.1, indicate that the original model still successfully
matches pedestrians without significant performance degra-
dation. Even with all images in the same pose, the model
can effectively differentiate between individuals. This sug-
gests that our generated images are of high quality, retaining
the main characteristics of the original images without no-
tably impacting the ReID model. Moreover, we found that
pedestrians walking at an angle have higher distinguishabil-
ity compared to other poses (front, back, and side views),
which are more representative of their identities.

2.3. More Random Generation

We provide additional randomly generated images in
Fig.4 from Market-1501, SYSU-MM01 and Occluded-
ReID datasets.

Methods Market1501 Occluded-reID
Rank-1 mAP Rank-1 mAP

BoT[15] 94.5 85.9 58.4 52.3
PCB[18] 93.8 81.6 - -

VGTri[25] - - 81.0 71.0
PVPM[4] - - 66.8 59.5

HOReID[19] 94.2 84.9 80.3 70.2
ISP[32] 95.3 88.6 - -
PAT[12] 95.4 88.0 81.6 72.1

TRANS[6] 95.2 88.9 - -
CLIP[10] 95.7 89.8 - -

SOLIDER[1] 96.9 93.9 - -
SSGR[24] 96.1 89.3 78.5 72.9
FED[21] 95.0 86.3 86.3 79.3

BPBreid[16] 95.7 89.4 82.9 75.2
PFD[20] 95.5 89.7 83.0 81.5

KPRIN[17] 95.9 89.6 85.4 79.1
KPRSOL[17] 96.62 93.22 84.83 82.6
CLIP+ours 97.3 94.9 - -

KPRIN+ours - - 91 89.34

Table 3. Comparisons with state-of-the-art methods on Mar-
ket1501 and Occluded-reID.

2.4. Collaborate with Re-ranking
Since our method does not change the features’ original dis-
tribution, it could collaborate post-processing strategies like
rerank, as shown in Tab.1.

2.5. Results on MSMT17 with TransReID
We conduct a simple experiment on MSMT17 dataset with
with TransReID and their official pre-trained weights. As
shown in Tab.2.

2.6. Comparisons with state-of-the-art methods on
three ReID benchmarks

Comparison on three ReID benchmarks. Since Our method
can be applied to any baseline, we choose three methods
from three benchmarks which have the official codes and
pre-trained weights. With our method, we achieve the new
SOTA in three benchmarks, as shown in Fig.3 and Fig.4.

2.7. Analysis on quality coefficient η of Generation
Model

Fig.2 illustrates the effect of adjusting the coefficient η on
the performance of the ReID model. To evaluate this im-
pact, we gradually increased the value of η and observed
changes on the mAP and Rank-1 metrics.

As the value of η increases, the performance of the ReID
model improves, reaching an optimal point. At η = 2, both
mAP and Rank-1 achieve their maximum values of 88.02%
and 94.77%, respectively. However, further increasing η



Methods
All-Search Indoor-Search

mAP Rank-1 mAP Rank-1
PMT[14] 66.13 67.70 77.81 72.95
MCLNet [5] 61.98 65.40 76.58 72.56
MAUM [13] 68.79 71.68 81.94 76.9
CAL[22] 71.73 74.66 83.68 79.69
SAAI(w/o AIM) [2] 71.81 75.29 84.6 81.59
SEFL[3] 72.33 77.12 82.95 82.07
PartMix[9] 74.62 77.78 84.38 81.52
MID [7] 59.40 60.27 70.12 64.86
FMCNet [29] 62.51 66.34 74.09 68.15
MPANet [23] 68.24 70.58 80.95 76.74
CMT [8] 68.57 71.88 79.91 76.90
protoHPE [28] 70.59 71.92 81.31 77.81
MUN [27] 73.81 76.24 82.06 79.42
MSCLNet [31] 71.64 76.99 81.17 78.49
DEEN [30] 71.80 74.70 83.30 80.30
CIFT [11] 74.79 74.08 85.61 81.82
SAAI+ours 76.44 79.33 86.83 84.2

Table 4. Comparison with state-of-the-art methods on SYSU-
MM01 without re-ranking.

beyond this point leads to a slight decline in performance.
It is easy to find that using generated images to centralize
features is effective. However, considering the quality of
the generated image, direct adding, although also effective,
may not always achieve the best results. Therefore adjusting
η according to the generation quality of the model in this
dataset can better centralize the features.

2.8. Analysis on k1/k2 of Neighbor Feature Central-
ization

We conducted a detailed analysis of different k1 and k2
combinations, evaluating the results of feature centraliza-
tion enhancement separately on the Query and Gallery sets,
as well as the combined effect (as shown in the Fig.3). The
selection of these two parameters primarily depends on the
number of potential positive samples within the set (adjust-
ing k1) and the confidence in feature associations (adjusting
k2). Overall, medium parameter combinations (k1 and k2 in
the range of 2-4) provide relatively optimal performance.
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