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A. Introduction
This supplementary material provides additional discus-
sions and details on the construction of differential data
(Section B), network design (Section C), evaluation metrics
(Section D), and more visual results (Section E).

To better illustrate the continuity and effects of cam-
era intrinsic setting control, we highly recommend read-
ers view the Videos/GIFs provided in the project page:
https://generative-photography.github.io/project/.

B. More Details of Building Differential Data
Our differential data pipeline dynamically generates train-
ing data by storing only base images and scene descriptions.
Camera settings are sampled during training and simulated
on-the-fly using physical principles, producing differential
multi-frame data without pre-storing large video files. This
also ensures continuous sampling of training data.

We provide below additional key considerations for con-
structing differential datasets for each type of camera set-
ting, along with sample demonstrations.

B.1. Differential Data for Bokeh Rendering

As shown in Fig. 7, to enhance the prominence of the bokeh
rendering effect, we impose the following two requirements
on the base images: 1). The images should be nearly all-
in-focus. 2). They should exhibit significant depth differ-
ences, allowing clear distinction between foreground and
background.

We employ bokehMe [10] for realistic bokeh simulation.
During this process, the value of the refocused disparity is
consistently maintained at the depth of the foreground.

B.2. Differential Data for Focal Length

In the real world, obtaining a set of images of the same
scene at multiple focal lengths is highly cumbersome, with
a lack of perfect alignment between the images, and the
achievable focal length range is limited [17]. In this paper,
we reference the level-of-detail [8, 13] approach and com-

(a) Base images

(b) Depth maps

Figure 7. The first row shows examples of base images used
for constructing bokeh rendering data, featuring prominent fore-
grounds and distinguishable backgrounds. The second row
presents depth maps extracted using the Depth Anything [14, 15]
model.

pute the field-of-view (FoV) ratio of the desired focal length
relative to the base image focal length. This ratio is then
used for center cropping to approximate the actual contin-
uous optical zoom process. In this subsection, we compare
the performance of our method with that of actual optical
zoom.

A camera’s field-of-view (FoV) can be expressed in
terms of the focal length f and the sensor dimensions (typ-
ically width w or height h). The formulas are as follows:

Horizontal FoV:

FoVh = 2 · arctan
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)
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Vertical FoV:

FoVv = 2 · arctan
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)
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Diagonal FoV:

FoVd = 2 · arctan
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)
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Figure 8. The comparison between the reference real focal lengths and our simulated results. Note that the real-world shooting data is
derived from [17], and there may be slight misalignment between images of different resolutions due to shooting conditions. We observe
that excessively high focal length simulation ratios can lead to a decline in image quality. Therefore, in this study, the focal length range is
constrained to 24-70mm. Please zoom in for a more detailed comparison.

where w denotes the width of the sensor, h is the height
of the sensor, and f represents the focal length.

Based on the aforementioned FoV calculation formula,
we crop the central region of a high-resolution base image
to simulate the corresponding view at larger focal lengths.
Fig. 8 compares the optical zoom with the results generated
by our cropping method. The real-world data for different
focal lengths is from [17]. Our method demonstrates a high
degree of consistency with the real data in terms of FoV. It
is worth noting that due to the resolution and quality con-
straints of the base image, excessive cropping leads to sig-
nificant loss of detail and quality. Therefore, in this work,
we limit the focal length range to 24-70mm.

B.3. Differential Data for Shutter Speed

A realistic imaging model can be formulated as follows,
similar to [2, 6, 11]. Consider a final LDR image, L, cap-
tured at an exposure time of t where the underlying HDR
scene irradiance map is represented by H .

L = ADC

{
ξ × Clip

{
Poisson

(
t× QE × (H + µdark)

)}
+N(0, σ2

read)

}1/γ

(4)

where ξ is the conversion gain, QE is the quantum effi-
ciency, µdark is the dark current, and σread is the read noise
standard deviation. Here, Poisson represents the Poisson
distribution characterizing the photon arriving process and
the dark current effect, and N represents the Gaussian dis-
tribution characterizing the sensor noise. ADC {·} is the
analog-to-digital conversion and Clip {·} is the full well
capacity induced saturation effect. We assume a linear cam-
era response function for CMOS sensors and that the imper-
fections in the pixel array, ADC, and color filter array have
been mitigated.

For the shutter speed control task, we selected base im-
ages with a high dynamic range and appropriate exposure to
approximate H . By varying the parameter t in the formula
4, we simulate multiple frames corresponding to different
shutter speeds.

B.4. Differential Data for Color Temperature

We employ an empirical approximation revised from [3] to
map a given color temperature in Kelvin to corresponding
RGB values, ensuring accurate and balanced color repre-
sentation. The input kelvin is normalized by dividing by
100, resulting in temp. The conversion process is as fol-
lows:



For temp ≤ 66:

RGB = (255,

max (0, 99.47 · ln(temp)− 161.12) ,

max (0, 138.52 · ln(temp − 10)− 305.04))

(5)

For 66 < temp ≤ 88:

RGB =
(
0.5 ·

(
255 + 329.70 · (temp − 60)−0.1933

)
,

0.5 ·
(
288.12 · (temp − 60)−0.1155

+ 99.47 · ln(temp)− 161.12 ) ,

0.5 · (138.52 · ln(temp − 10)− 305.04 + 255))
(6)

For temp > 88:

RGB = (329.70 · (temp − 60)−0.1933,

288.12 · (temp − 60)−0.1155,

255)

(7)

After computation, the RGB values are clipped to the
range [0, 255] to ensure valid color values. The resulting
balanced RGB values are returned as a float32 array,
providing an accurate representation of the input temper-
ature in RGB space.

C. More Details of Differential Camera En-
coder

In the Differential Camera Encoder, an important aspect is
the incorporation of the differences in camera setting scales.
We extract the camera settings for Fr frames using the CLIP
text encoder, compute the differences, and then reshape the
result into an embedding of size Fr × C ×H ×W .

In addition, this section will also provide more details on
the coarse embedding and the embedding encoder.

C.1. Coarse Embedding

The input to the coarse embedding is solely the provided
camera settings. Based on a simplified version of the physi-
cal simulation model, it outputs an embedding with a shape
of Fr × C ×H ×W .

For bokeh rendering, the input bokeh blur parameter is
treated as an equivalent Gaussian blur kernel. A larger pa-
rameter indicates that the weight of each pixel in the output
is lower, resulting in smaller global pixel embedding values.

As illustrated in Fig. 9, for focal length, we use mask to
proxy the coarse embedding. Specifically, after calculating
the field of view (FoV) ratio, we mask out regions of the
original image resolution that should not be present.

For shutter speed, we roughly estimate the ratio between
the target shutter time and the base shutter time (simplified
as 0.2 second on average). This ratio is then used to com-
pute the overall average brightness ratio of the image, which
serves as the global coefficient for the coarse embedding.
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Figure 9. We use a mask as the coarse embedding for focal length
control. The black areas represent pixels around the edges of the
frame that should not be displayed at the given focal length.

For color temperature, we estimate the ratio coefficients
for the RGB channels based on the color temperature value,
using a simplified version of the corresponding formula
from Equation 5 to Equation 7. These coefficients are then
used as the scaling factors for the coarse embedding.

C.2. Embedding Encoder

The embedding encoder takes both the coarse embedding
and the differential information embedding as input. After
encoding, it injects the information into the temporal atten-
tion layers of the foundation model in a hierarchical manner.
Its internal structure is based on the T2I adapter [9], with
additional temporal structures for multi-setting processing.

D. More Details of Proposed Metrics

D.1. Accuracy

To evaluate the accuracy of the camera physics in gen-
erated images, we first simulate the reference frames of
the base image under multiple camera settings, using the
same scene description and corresponding camera parame-
ters for generation. We then calculate the overall trend of
camera effects within the reference frames and the overall
trend of camera effects within the generated multi-frame se-
quence. The Pearson correlation coefficient between these
two trends is computed as an accuracy metric (CorrCoef).
For each type of camera setting, we employ different meth-
ods to calculate the camera effects.

• For Bokeh: We compute the average blur level per frame
using the Laplacian operator.

• For Focal Length: We first detect feature points using
SIFT [7], then perform feature matching between adja-
cent frames using Brute-Force Matcher [1]. We calculate
the similarity transformation matrix from the matched
points and extract the scaling factor from the transforma-
tion matrix.

• For Shutter Speed: We compute the average brightness
per frame.

• For Color Temperature: We compute the average color
per frame.

D.2. Consistency

For the consistency between frames corresponding to differ-
ent camera setting values, we compute the frame-to-frame



consistency using the Frame-wise Learned Perceptual Im-
age Patch Similarity (LPIPS) [16]. Subsequently, we aver-
age the LPIPS scores of all adjacent frames to obtain the
final score. An important nuance here is that a lower LPIPS
score is not always preferable, as we require some variation
in camera effects. Therefore, the LPIPS score should be
compared to that of reference videos, with a closer match
indicating better performance.

D.3. Following

We measure the prompt following of the generated frames
by evaluating their alignment with the input prompts.
Specifically, we use the CLIP [12] text and image encoders
to obtain the features of the prompt and the generated frame,
and then compute the cosine similarity between the two.

E. More Visual Results
In this section, we provide additional visual results and
comparisons with other methods.

Fig. 10 to Fig. 13 illustrate the visual comparisons for
bokeh rendering, focal length, shutter speed, and color tem-
perature across various generative methods. Our approach
demonstrates significant advantages in understanding cam-
era physical parameters while maintaining scene consis-
tency.

We strongly encourage readers to view the videos/GIFs
we provide for more intuitive comparisons and additional
case studies.
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Bokeh Rendering

SD3

FLUX

AnimateDiff

CameraCtrl

A display of frozen desserts, including cupcakes and donuts, is arranged in a row on a counter. The 
desserts are placed in plastic containers, and there are several of them in various sizes and flavors; 

with bokeh blur parameter ** 

Ours

2 6 10 14 18

Figure 10. Visual comparisons between different generative methods on camera bokeh rendering control. Both AnimateDiff [4] and
CameraCtrl [5] have been fine-tuned/trained on our data.
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Focal Length
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A clean beach with a few footprints; 
with ** lens

Ours

31mm 36mm 42mm 48mm 54mm

Figure 11. Visual comparisons between different generative methods on camera focal length control. Both AnimateDiff [4] and CameraCtrl
[5] have been fine-tuned/trained on our data.
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Shutter Speed
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A kitchen with a black countertop and a window above the sink. The kitchen is well-equipped with a 
microwave, oven, and various utensils such as knives and spoons; 

with shutter speed **

Ours

0.2 second 0.36 second 0.46 second 0.66 second 0.85 second

Figure 12. Visual comparisons between different generative methods on camera shutter speed control. Both AnimateDiff [4] and Camer-
aCtrl [5] have been fine-tuned/trained on our data.
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Color Temperature

SD3

FLUX
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CameraCtrl

A beautiful view of a city with a castle and a large body of water; 
with temperature **

Ours

3000K 6000K 7000K 8000K 9000K

Figure 13. Visual comparisons between different generative methods on camera color temperature control. Both AnimateDiff [4] and
CameraCtrl [5] have been fine-tuned/trained on our data.


