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A. Qualitative results
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Figure 7. Qualitative results of COOD and TA-COOD. GT: green
BBox, detection: red BBox.
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Figure 8. Qualitative result COOD (left) vs. TA-COOD (right).

Figure 7 presents qualitative results for a sample frame
from each dataset. The COOD results in Figs. 7a and 7b
demonstrate that our framework, SparseAlign, successfully
detects most vehicles with high overlap with the ground
truth. In contrast, TA-COOD poses a greater challenge,
leading to less accurate detections, as shown in Figs. 7c
and 7d. However, the model performs better on OPV2Vt
than on DAIR-V2Xt. We attribute this to OPV2Vt being a
simulated dataset with more precise ground truth, enabling
more accurate learning of fine-grained temporal context.

Figure 8 illustrates the differences between COOD and
TA-COOD. On the left, point clouds scanned by three IAs
are visualized in different colors. The ground truth BBoxes
(green) are perfectly aligned with the synchronized scanned
points, allowing the model to focus solely on learning the
geometric structure of the point clouds for accurate vehi-
cle detection. However, in TA-COOD, a more realistic set-
ting, LiDAR points are typically scanned at different time
points rather than being synchronized. In the right image,
these asynchronized points are color-coded from blue (ear-
lier scans) to red (later scans). Additionally, the ground
truth bounding boxes are aligned to a future time frame
rather than the exact geometry of the scanned points. This
ground truth encourages the model to leverage temporal
context to accurately predict vehicle positions in the near
future, compensating for location errors caused by commu-
nication latency.

B. Free Space Augmentation (FSA)
Free space augmentation (FSA) was first introduced in
GevBEV[42] for BEV map-view semantic segmentation.
Typically, point cloud data only capture reflections from ob-
stacle surfaces. For example, in Fig. 9, points A and B rep-
resent reflections from the ground surface. With only these
measurements, we can confirm the presence of obstacles at
these locations but have no information about the space be-
tween them. However, distinguishing between empty and
unknown spaces is crucial in many applications. For in-
stance, autonomous vehicles can safely navigate through



LiDAR origin

LiDAR rays

Augmented free space points
Ground AB

Figure 9. Free space augmentation.

Figure 10. SparseAlign performance with and without FSA. The
FSA points are in blue. Red texts are IoUs between the detected
(red) and the ground-truth (green) BBoxes.

known empty spaces but must avoid unknown areas where
no measurements exist.

Each LiDAR ray provides information not only through
its reflection point but also along its entire path, which con-
sists of free space points indicating empty space. Augment-
ing sparse point clouds with additional points along LiDAR
rays helps fill in these gaps. However, adding points along
the entire ray path would be computationally prohibitive.
Instead, as illustrated by the yellow points in Fig. 9, it is
sufficient to augment only the free space points between ad-
jacent laser beams.

Mathematically, given the i-th LiDAR ray with ground
distance di, LiDAR height relative to the ground h, and the
inclination angle difference α between two adjacent rays
(e.g., θ for the i-th ray), the gap distance between adjacent
rays is calculated as:

δd = di − di−1 = di − h · tan (arctan di
h

− α) (10)

Within this gap distance, we evenly distribute free space

points to augment the original point cloud. These points
not only convey information about empty spaces but also
enhance connectivity between disjoint LiDAR scan rings.
This, in turn, improves the convolutional layers’ ability to
learn spatial context over a larger receptive field.

Figure 10 compares SparseAlign’s performance with and
without FSA. The results show that FSA slightly improves
detection accuracy. Additionally, the augmented free space
points (blue) incorporate timestamps computed based on
their angles in the polar coordinate system. This enhances
temporal context learning, particularly in distant regions
where scan observations are sparse.

C. Dilation convolution

In this paper, we demonstrated that SUNet effectively miti-
gates ICF and CFM issues by expanding the receptive field
through CEC layers. One might argue that dilated convolu-
tional layers could serve a similar purpose. To investigate
this, we conducted an additional experiment, modifying the
dilation size of the first convolution layer in each SUNet
block from one to two. The results indicate that, in this
case, dilated convolutions fail to effectively expand the re-
ceptive field or mitigate the ICF issue. Instead, they degrade
local feature learning.

Dilation size OPV2V DAIR-V2X
AP0.5 AP0.7 AP0.5 AP0.7

2 0.890 0.827 0.707 0.637
1 0.924 0.885 0.773 0.638

Table 7. Comparison of normal sparse convolutions and dilation
convolutions
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Figure 11. Schedules for gradient calculation.

D. Gradients calculation schedule for efficient
training
To optimize training efficiency, we schedule gradient calcu-
lations only for essential modules, as illustrated in Fig. 11.
t0 is the newest frame and t1 to t3 is the historical frames.
For the ego vehicle, we compute gradients for all modules
in the latest data frame, except for PAM, which is trained
independently. Additionally, SUNet, RoI, and TAM com-
pute gradients across all frames to facilitate temporal fea-
ture learning.

In the OPV2V and OPV2Vt datasets, each IA is
equipped with identical range-view sensors. Consequently,
we disable gradient calculations for the first three modules
in cooperative IAs, as their data exhibit the same feature
patterns as those of the ego IA.

In contrast, in the DAIR-V2X and DAIR-V2Xt datasets,
cooperative IAs are infrastructure-based, featuring different
sensors and viewing angles from vehicles. To ensure effec-
tive learning from infrastructure data, gradient calculations
remain enabled for SUNet, RoI, and TAM in cooperative
agents.

The final two modules pertain to the fusion process,
which occurs exclusively in the ego vehicle. Therefore, no
gradient calculations are performed on the cooperative side.
Notably, we enable gradients for only one cooperative IA
when necessary, irrespective of the total number of IAs.

E. Average precision on 3D metric

TransIFF[4] SparseAlign
OPV2V - 0.922/0.816

DAIR-V2X 0.596/0.460 0.727/0.352
OPV2Vt - 0.898/0.703

DAIR-V2Xt - 0.698/0.237

Table 8. AP 3D at IoU thresholds of 0.5/0.7.

In the paper, we used BEV IoU thresholds to calcu-
late the average precision. Here, we also report results
based on 3D IoU thresholds for convenient comparison with
other methods that use 3D AP as an evaluation metric, such
as TransIFF[4]. The results in Tab. 8 indicate that our

SparseAlign achieves higher AP at a 3D IoU threshold of
0.5 but lower AP at 0.7. We attribute this to the fact that
the three alignment modules in SparseAlign consider only
the x and y coordinates in geometric operations during the
fusion process, without explicitly accounting for the z-axis.


