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Supplementary Material

This supplemental material mainly contains:

• Sec. A discusses the selection of the number of sampling
steps.

• Performance comparison of InvSR with various base dif-
fusion models in Sec. B.1.

• Ablation studies on the intermediate noise prediction
model in Sec. B.2.

• Ablation studies on the loss function in Sec. B.3.
• Discussions on the efficiency and limitation in Sec. B.4.
• Visual comparisons on ImageNet-Test dataset in Fig. IV.
• More visual comparisons on real-world examples in

Fig. V.

A. Discussion on Sampling Steps
The proposed method, named InvSR, enables a flexible sam-
pling mechanism that allows an arbitrary number of sam-
pling steps. This naturally raises an interesting question:
how do we determine an appropriate number of sampling
steps for general image super-resolution (SR) tasks? We
answer this question from two aspects.

First, as shown in Tables 2 and 3, and Fig. 3 of the main
text, InvSR achieves promising results with only a single
sampling step, evidently outperforming recent state-of-the-
art (SotA) one-step methods. Therefore, we recommend
setting the sampling steps to one for most real-world appli-
cations, effectively balancing efficiency and performance.

Second, we can also adjust sampling steps according to
the type of image degradation. Generally, image degrada-
tions can be categorized into two main classes: blurriness
and noise. As illustrated in Fig. 1 and Fig. II, multi-step
sampling would incorrectly amplify noise, leading to unde-
sirable artifacts for images with heavy noise. In contrast,
for images primarily suffering from blurriness, multi-step
sampling proves beneficial, as it generates more detailed
and realistic image structures. In practice, we could first
estimate the noise level using some off-the-shelf degrada-
tion estimation models, such as Mou et al. [2]. Based on
the estimated noise level, one can determine whether a one-
step or multi-step sampling is more appropriate. In cases
where multi-step sampling is favored, the number of sam-
pling steps can be freely adjusted to achieve a satisfactory
result.

B. Experiments
B.1. Base Diffusion Model
For the pre-trained diffusion models used in InvSR, we
considered two prevailing variants of Stable Diffusion [3],
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Figure I. A typical visual comparison of the proposed InvSR based
on different diffusion models: SD-2.0 and SD-Turbo. Note that
these results are achieved with five sampling steps.

namely SD-2.01 and SD-Turbo2. Table I provides a quan-
titative comparison of InvSR equipped with these two base
models. When reducing the sampling steps to one, InvSR
demonstrated similar performance with both SD-2.0 and
SD-Turbo. However, in the multi-step sampling scenarios,
the model based on SD-Turbo exhibited more stable per-
formance, particularly in terms of reference metrics. Fur-
thermore, a visual comparison under five sampling steps,
as illustrated in Fig. I, reveals that the SD-2.0-based model
produced noticeable artifacts, aligning with the quantitative
results. We thus employed SD-Turbo as our base model
throughout this study.

B.2. Intermediate Noise Prediction
In our proposed diffusion inversion framework, we opt to
sample the noise maps randomly rather than employing a
noise prediction model for intermediate timesteps. This
choice is motivated by the high SNR (signal-to-noise ra-
tio) constraint imposed on the inversion timesteps, as elab-
orated in Sec. 3.2.3 of the main text. To further validate
this choice, we introduced an additional baseline, denoted
as “InvSR-Int”, which integrates an extra noise predictor
specifically trained for intermediate timesteps. Table II re-
ports a detailed comparison between InvSR and InvSR-Int.
It can be observed that the performance differences between
these two models are negligible. Therefore, we omit the in-
termediate noise prediction in InvSR, further simplifying the
overall framework.

B.3. Loss Functions
In addition to the commonly used L2 loss, we incorporate
LPIPS [5] loss and GAN [1] loss to train our noise predic-
tor, as formulated in Eq.(11) of the main text. The hyper-
parameters of λl and λg are introduced to control the impor-
tance of the LPIPS and GAN losses, respectively. Table III

1https://huggingface.co/stabilityai/stable-diffusion-2-base
2https://huggingface.co/stabilityai/sd-turbo



Table I. Quantitative comparisons of the proposed InvSR equipped with two different based models, namely SD-2.0 and SD-Turbo, on the
dataset of ImageNet-Test.

Base models #Steps
Index of the sampled

timesteps
Metrics

PSNR↑ SSIM↑ LPIPS↓ NIQE↓ PI↓ CLIPIQA↑ MUSIQ↑
SD-Turbo

5 {250, 200, 150, 100, 50} 22.70 0.6412 0.2844 4.8757 3.4744 0.6733 69.8427
SD-2.0 21.40 0.6063 0.3274 5.1508 3.8709 0.6467 67.6056

SD-Turbo
3 {150, 100, 50} 23.84 0.6713 0.2575 4.2719 3.0527 0.6823 70.4569

SD-2.0 23.13 0.6566 0.2776 4.2449 3.1467 0.6722 69.5178

SD-Turbo
1 {200} 24.14 0.6789 0.2517 4.3815 3.0866 0.7093 72.2909

SD-2.0 23.36 0.6637 0.2647 4.3304 3.1545 0.6969 71.4974

Table II. Quantitative comparisons of InvSR to the baseline method InvSR-Int that combines an additional noise predictor for the interme-
diate timesteps on the dataset of ImageNet-Test.

Methods #Steps
Index of the sampled

timesteps
Metrics

PSNR↑ SSIM↑ LPIPS↓ NIQE↓ PI↓ CLIPIQA↑ MUSIQ↑
InvSR

5 {250, 200, 150, 100, 50} 22.70 0.6412 0.2844 4.8757 3.4744 0.6733 69.8427
InvSR-Int 22.70 0.6412 0.2844 4.8785 3.4718 0.6734 69.8466

Table III. Quantitative ablation studies on the loss function of Eq.(11) in the main text, wherein the hyper-parameters λl and λg control the
weight importance of the LPIPS loss and the GAN loss, respectively.

Methods
Hyper-parameters Metrics

λl (LPIPS loss) λg (GAN loss) PSNR↑ SSIM↑ LPIPS↓ NIQE↓ PI↓ CLIPIQA↑ MUSIQ↑
Baseline1 0.0 0.0 26.71 0.7365 0.2850 9.2792 6.4147 0.6168 64.6069
Baseline2 2.0 0.0 26.24 0.7274 0.2841 8.4367 5.7973 0.6501 66.1726
Baseline3 0.0 0.1 24.11 0.6809 0.2599 4.4518 3.1229 0.7078 72.5045
InvSR-1 2.0 0.1 24.14 0.6789 0.2517 4.3815 3.0866 0.7093 72.2909

Table IV. Efficiency comparisons of different methods on the x4 (128 → 512) SR task, where the runtime results are tested on an NVIDIA
A100 GPU with 40GB memory. For diffusion-based SR approaches, the number of sampling steps is annotated in the format of “Method
name-Steps”.

Metrics
Methods

BSRGAN RealESRGAN StableSR-50 DiffBIR-50 SeeSR-50 ResShift-4 SinSR-1 OSEDiff-1 InvSR-1
#Params (M) 16.70 16.70 152.70 385.43 751.50 118.59 118.59 8.50 33.84
Runtime (ms) 65 65 3459 7937 6438 319 138 176 117

provides a quantitative comparison of various baseline mod-
els under different loss configurations, and Fig. III demon-
strates a typical visual example. We can observe that Base-
line1 trained solely with the L2-based diffusion loss pro-
duces over-smooth outputs, which is consistent with its su-
perior PSNR scores. Incorporating the GAN loss enhances
the generation of finer image details but may introduce un-
desirable artifacts. The addition of LPIPS loss can mitigate
these artifacts to a certain extent, striking a balance between
perceptual quality and artifact suppression. Therefore, this
study uses both LPIPS and GAN losses to achieve optimal
performance.

B.4. Efficiency and Limitation

Table IV lists an efficiency comparison of various meth-
ods on the x4 (128 → 512) SR task. It can be observed
that the proposed InvSR demonstrates advantages in runtime
among one-step diffusion-based approaches. Despite hav-

ing a larger number of parameters compared to the recent
SotA method OSEDiff [4], InvSR achieves a 50% reduction
in inference time. This is mainly because OSEDiff relies on
an additional image captioning model, whereas InvSR does
not. However, it is noteworthy that InvSR still lags behind
GAN-based methods in efficiency due to its reliance on the
large-scale Stable Diffusion model. To address the high-
efficiency demand in real-world applications, future work
will explore model quantization techniques to further accel-
erate the inference speed.
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Figure II. Qualitative comparisons of the proposed InvSR with different sampling steps, where the number of sampling steps is annotated in
the format “InvSR-Steps”. In the first example, mainly degraded by blurriness, multi-step sampling is preferable to single-step sampling as
it progressively recovers finer details. Conversely, in the second example with severe noise, a single sampling step is sufficient to achieve
satisfactory results, whereas additional steps may amplify the noise and introduce unwanted artifacts. (Zoom-in for best view)
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Figure III. Visual comparisons of the proposed method with various loss configurations. (a) Zoomed LR image, (b) Baseline1 with λl = 0
and λg = 0, (c) Baseline2 with λl = 2.0 and λg = 0, (d) Baseline3 with λl = 0 and λg = 0.1, (e) recommended settings of λl = 2.0 and
λg = 0.1. (Zoom-in for best view)
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Figure IV. Visual comparisons of various methods on three typical examples from ImageNet-Test. For diffusion-based methods, the number
of sampling steps is annotated in the format of “Method name-Steps”. (Zoom-in for best view)
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Figure V. Visual comparisons of various methods on four real-world examples from RealSet80. For diffusion-based methods, the number
of sampling steps is annotated in the format of “Method name-Steps”. (Zoom-in for best view)
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