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A. Datasets and Baselines

A.1. Datasets

Our experiments are based on eight chest X-ray datasets,
including MIMIC-CXR [13] for pre-training; CheXpert
[11] and NIH ChestX-ray14 [26] for both pre-training and
fine-tuning; VinDr-CXR [20], ShenZhen-CXR [12], RSNA
Pneumonia [23], MedFMC-ChestDR [25], and SIIM-ACR
Pneumothorax [1] for fine-tuning. Detailed information on
these datasets is provided below.

• MIMIC-CXR [13] is one of the largest X-ray datasets,
containing over 370k radiograph images from over
220,000 patient studies with paired radiology reports. We
gather non-lateral scans from this dataset (about 230k im-
ages) and use this dataset for self-supervised pre-training.

• CheXpert [11] contains about 218k images with 14 dis-
ease labels automatically extracted from radiology re-
ports. We use this dataset for pre-training and conduct
multi-label classification experiments on five conditions:
atelectasis, cardiomegaly, consolidation, edema, and effu-
sion. We report the performance on the official validation
set (200 patients) with a held-off subset from the training
set for model selection. The mean AUROC score over the
five classes is reported for this dataset.

• NIH ChestX-ray14 [26] contains about 112k frontal-
view chest radiographs, with annotations on 14 tho-
racic diseases: atelectasis, cardiomegaly, consolidation,
edema, effusion, emphysema, fibrosis, hernia, infiltration,
mass, nodule, pleural thickening, pneumonia, and pneu-
mothorax. We use the training split of this dataset for pre-
training and conduct disease classification experiments on
the 14 classes. We follow the official split with 86k im-
ages for training and 25k for testing. The mean AUROC
score over the 14 classes is reported for this dataset.

• VinDr-CXR contains 18,000 radiographs with expert an-
notations. Each radiograph is associated with 22 local
findings and 6 global findings. We consider the multi-
label classification task on the 6 global labels, includ-
ing lung tumor, pneumonia, tuberculosis, other diseases,
COPD, and no finding. We adopt the official split with
15,000 images for training and 3,000 images for testing.
The mean AUROC score over the 6 classes is reported for
this dataset.

• ShenZhen-CXR defines a binary classification problem
where each radiograph is labeled with the presence of tu-
berculosis. We follow the data split provided by [18] with
the train/val/test split containing 463/65/134 images, re-

spectively. The AUROC score is reported for this dataset.
• RSNA Pneumonia [23] consists of over 26k radiographs,

each categorized into one of three classes: normal, lung
opacity, or no opacity but not normal. Additionally,
expert-annotated bounding boxes highlight areas of lung
opacity. This dataset is used for both classification and
segmentation tasks. For classification, we frame it as a
three-class problem, reporting top-1 accuracy. For seg-
mentation, the bounding boxes are converted into seg-
mentation masks and the mean dice score is reported. We
follow the data split provided by [18] with train/val/test
split containing 21295/2680/2709 images, respectively.

• MedFMC-ChestDR [25] is a dataset tailored for few-
shot adaptation. Each radiograph is associated with 19
common thoracic disease labels. The official competition
consists of 1-shot, 5-shot, and 10-shot tracks, each with
five different train/val splits. To ensure consistency, we
use the first split in each track and report the mean perfor-
mance averaged over five random seeds. The mean AU-
ROC score is reported over the 19 classes for this dataset.

• SIIM-ACR Pneumothorax [1] comprises 12,047 radio-
graphs with pixel-level annotations for pneumothorax.
We perform binary segmentation on this dataset, with the
mean dice score reported as the evaluation metric.

A.2. Baselines

We compare CheXWorld with several self-supervised learn-
ing methods developed for general-domain and medical
images, including MoCo-v3 [6], DINO [5], BEiT [3],
MAE [9, 27], SimMIM [18, 28], LVM-Med [19], Adam-
v2 [10], and Rad-DINO [22]. When possible, we lever-
age radiology-specific adaptations of these methods. For
a fair comparison, all methods utilize models of compara-
ble sizes, such as ViT-B [7], Swin-B [15], and ConvNeXt-B
[16]. Below, we provide a brief overview of each approach:

• MoCo-v3 [6] is a contrastive learning framework that em-
ploys a momentum encoder to create a dynamic dictio-
nary for stable and effective representation learning. It
explores additional training techniques to optimize vision
transformer performance.

• DINO [5] pre-trains vision transformers with a self-
distillation objective. Techniques like distribution center-
ing and sharpening are incorporated to stabilize the train-
ing process.

• BEiT [3] is a masked image modeling (MIM) approach
inspired by masked language modeling in natural lan-
guage processing. The model predicts masked token in-



dices generated by discrete variational autoencoders.
• MAE [9] is an encoder-decoder framework for MIM, pre-

dicting raw pixel values for masked patches. Only visible
patches are passed to the encoder to improve computa-
tional efficiency. We use its radiology-adapted version
introduced by [27].

• SimMIM [28] is another MIM approach based on the
Swin Transformer [15]. It employs random masking with
a moderately large patch size and uses a simple linear de-
coder head. The radiology-adapted version from [18] is
used in our experiments.

• LVM-Med [19] leverages a graph-matching formulation
for contrastive learning, building a versatile model that
integrates diverse medical image modalities and datasets.

• Adam-v2 [10] focuses on learning anatomical structures
in X-ray images hierarchically, using pre-training objec-
tives that promote localizability, composability, and de-
composability.

• Rad-DINO [22] extends DINOv2 [21] by performing
continuous pre-training on radiology datasets.

B. Implementation Details

B.1. Pre-training

Data. CheXWorld is pre-trained on the combination of
three datasets: MIMIC-CXR [13], NIH ChestX-ray14 [26],
and CheXpert [11] (following [27]). We only use the frontal
scans for pre-training, resulting in ∼0.5M radiographs in
total. We exclude the validation/test split of the NIH Chest-
Xray14 and CheXpert datasets from the pre-train dataset to
avoid data leakage to the downstream tasks.

Architecture and optimization. The context encoder
is a ViT-Base with a patch size of 16 × 16. The target
encoder is the exponential moving average of the context
encoder with an initial ratio equal to 0.996 that gradually
increases to 1.0 following a cosine schedule. The predic-
tor is 6 layers deep with 384-dimensional embeddings. We
use sinusoidal functions [24] to encode the image patch po-
sitions following [9]. We use the AdamW optimizer [17]
with β1 = 0.9, β2 = 0.999 with an initial learning rate of
2 × 10−4 and weight decay set to 0.05. Gradient clipping
is set to 1.0 throughout our experiments. The learning rate
schedule follows linear warmup for 40 epochs and cosine
annealing afterward. L2 loss is computed between the raw
predictor outputs and the layer-normalized target encoder
outputs. The model is trained from scratch for 300 epochs
with a batch size of 2048, taking 16 hours on a machine
with 8 RTX 4090 GPUs, each with 24 GB memory.

Local anatomical structure modeling. We adopt a
block-wise masking strategy [2]. The image mask is the
union of four rectangular blocks with the scale (0.15, 0.2).
We further shrink the context’s visible area by a maximal
factor of 0.25, which we found beneficial. The context en-

coder only processes unmasked patches, while the entire
image takes the entire image as input. In the predictor, mask
tokens corresponding to the masked locations are padded to
the context. The loss is computed on masked locations.

Global anatomical structure modeling. We sample
two random crops with the same spatial size with their
scales in (0.3, 1.0) and aspect ratios in (0.75, 1.33). The rel-
ative position information ∆x→y is obtained in pixel space
and then used to determine the location of target image
patches in the context’s coordinate system. Note that the
sinusoidal encoding function PE(·) supports fractional in-
puts. Thus, the target patch locations ϕx→y(u, v) can be
encoded in the same way as the context patch locations. We
compute prediction loss on all target patches.

Domain variation modeling. We simulate domain tran-
sitions with a set of augmentations, including brightness,
contrast, gamma transform, and Gaussian blur. Given an
input image I (or an image crop), the target is obtained by
applying brightness and contrast adjustment to the original
image. Then, we apply another augmentation consisting of
bright, contrast, gamma transform, and Gaussian blur, with
the configurations of the augmentation stored in the param-
eter a. In particular, a consists of four scalars: the factor for
brightness enhancement in the range (0.6, 1.4), the factor
for contrast adjustment in the range (0.6, 1.4), the factor for
gamma transform in the range (0.5, 2.0) and the kernel size
of the Gaussian blur in the range (0.05, 2.0). Essentially, the
context is obtained by augmenting the original image twice,
where the second augmentation is modeled by CheXWorld.
Domain variation modeling is implemented along with lo-
cal or global anatomical modeling. The parameter a is con-
catenated with the mask token m ∈ Rd along the feature
dimension, resulting in a vector of length d + 4, which is
then fed into the policy network π. The policy network π is
a three-layer MLP with an input dimension of d+ 4 and an
output dimension of d.

B.2. Analytical Experiments

Anatomical modeling visualization. We utilize the
RCDM framework [4] to showcase the anatomical model-
ing capabilities of CheXWorld. Specifically, we train a dif-
fusion model to predict target pixel values conditioned on
the output representation ĥy of the world model. This guid-
ing representation is first projected to a 512-dimensional
vector, which is then injected into the diffusion model
via conditional batch normalization layers [8] within each
residual block. For local anatomical structure modeling,
the diffusion model individually predicts four rectangular
masked regions, guided by spatially pooled predictor out-
puts corresponding to each location. For global anatomi-
cal layout modeling, the model predicts the entire target re-
gion using spatially pooled outputs from the predictor. Fig-
ure 5 is built upon local anatomical modeling, focusing on



masked regions with visible artifacts. The diffusion model
is trained using the validation split of the NIH ChestXray-
14 dataset, while the visualizations are generated from the
test split. This separation ensures that there is no infor-
mation leakage between the different stages of the exper-
iment—CheXWorld pre-training, diffusion model training,
and visualization.

Anatomical Correspondence Visualization. We input
the entire radiograph into the CheXWorld encoder to ob-
tain image patch embeddings. Then we calculate per-pixel
feature embeddings using RoI pooling over a 2x2 window
centered on the pixel location. To illustrate anatomical cor-
respondence, we focus on four key anatomical landmarks:
the aortic arch, right hilum, left ventricle, and clavicle. The
final similarity map is computed by measuring the L2 dis-
tance between the landmark embeddings of the reference
image and the pixel embeddings of the test image. For im-
proved visualization, the similarity values are rescaled.

Domain sensitivity test. To evaluate how effectively
CheXWorld handles domain variations, we construct a test
dataset using different augmentation configurations applied
to the same base image. Specifically, we sample n = 64
augmentation parameters evenly from a predefined range
and apply these augmentations to generate a candidate set
of target images {yi}ni=1. For each target yi, we further ap-
ply a randomly sampled augmentation to obtain the corre-
sponding context xi = Tai

(yi), resulting in a set of context-
target-latent triplets {(xi, yi, ai)}. The model’s task is to
predict the target yi given the context xi and latent ai. The
prediction error is defined as:

L(y;x, a) = ∥g(fθ(x); a)− f ′
θ′(y)∥2. (1)

Ideally, the prediction error L(yi, xi, ai) should be smaller
than L(yj , xi, ai) for any j ̸= i. For the i-th case, we rank
the errors {L(yj , xi, ai)}nj=1 across the candidate set and
compute the top-k recall rate of the true target yi. This pro-
cedure is repeated across 50 different images, and the final
result is the averaged outcome over these trials.

B.3. Fine-tuning
For classification, we employ mean pooling over all the out-
put tokens to obtain a global feature representation of the
image. Subsequently, a task-specific linear head is attached
to the model for fine-tuning. We utilize the AdamW opti-
mizer with a default learning rate of 1 × 10−4, with layer-
wise decay set to 0.75 and a drop path rate of 0.6. For the
CheXpert benchmark, we adopt a learning rate of 1× 10−2

and a drop path of 0.1. The data augmentation pipeline in-
volves random resized cropping and color jittering.

For segmentation, we connect a U-Net decoder with the
pre-trained backbone with a SimpleFPN [14] adapter. The
U-Net decoder has four stages with number of channels 8,
16, 32, and 64. The initial learning rate is set to 2 × 10−4

with a layer-wise decay rate of 0.8 and a drop path rate of
0.1. The data preprocessing pipeline for training involves
random brightness contrast, shifting, and scaling.

Due to the varying sizes of the datasets, we employ dif-
ferent batch sizes and epochs across benchmarks. The input
size of the image is set to 224 × 224 pixels. 10% of the
training data is used for validation. Each experiment is con-
ducted five times.

C. Numerical Results
Figure 7 illustrates the fine-tuning performance of CheX-
World on the VinDr-CXR dataset using varying proportions
of the training data, which highlights CheXWorld’s ability
to enhance data efficiency. Here, we present the correspond-
ing numerical results in Table 1.

Table 1. Fine-tuning with 1%, 10%, and 100% training data on
VinDr-CXR.

Method 1% 10% 100%

LVM-Med 76.41±3.79 85.85±0.59 88.22±0.44
Adam-v2 77.90±1.14 88.26±0.48 91.46±0.33

MAE 78.07±1.66 90.63±0.16 92.76±0.18
SimMIM 83.85±1.62 92.15±0.31 92.81±0.31

CheXWorld 90.53±1.01 94.71±0.10 95.24±0.12
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Wáng, Pu-Xuan Lu, and George Thoma. Two public chest x-
ray datasets for computer-aided screening of pulmonary dis-
eases. Quantitative imaging in medicine and surgery, 4(6):
475, 2014. 1

[13] Alistair EW Johnson, Tom J Pollard, Seth J Berkowitz,
Nathaniel R Greenbaum, Matthew P Lungren, Chih-ying
Deng, Roger G Mark, and Steven Horng. Mimic-cxr, a de-
identified publicly available database of chest radiographs
with free-text reports. Scientific data, 6(1):317, 2019. 1,
2

[14] Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He.
Exploring plain vision transformer backbones for object de-
tection. In European conference on computer vision, pages
280–296. Springer, 2022. 3

[15] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012–10022, 2021. 1, 2

[16] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 11976–11986,
2022. 1

[17] Ilya Loshchilov and Frank Hutter. Fixing weight decay reg-
ularization in adam. 2018. 2

[18] DongAo Ma, Mohammad Reza Hosseinzadeh Taher, Jiax-
uan Pang, Nahid UI Islam, Fatemeh Haghighi, Michael B
Gotway, and Jianming Liang. Benchmarking and boosting
transformers for medical image classification. In MICCAI

Workshop on Domain Adaptation and Representation Trans-
fer, pages 12–22. Springer, 2022. 1, 2

[19] Duy MH Nguyen, Hoang Nguyen, Nghiem Diep, Tan Ngoc
Pham, Tri Cao, Binh Nguyen, Paul Swoboda, Nhat Ho, Shadi
Albarqouni, Pengtao Xie, et al. Lvm-med: Learning large-
scale self-supervised vision models for medical imaging via
second-order graph matching. Advances in Neural Informa-
tion Processing Systems, 36, 2024. 1, 2

[20] Ha Q Nguyen, Khanh Lam, Linh T Le, Hieu H Pham, Dat Q
Tran, Dung B Nguyen, Dung D Le, Chi M Pham, Hang TT
Tong, Diep H Dinh, et al. Vindr-cxr: An open dataset of
chest x-rays with radiologist’s annotations. Scientific Data,
9(1):429, 2022. 1

[21] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
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[22] Fernando Pérez-Garcı́a, Harshita Sharma, Sam Bond-Taylor,
Kenza Bouzid, Valentina Salvatelli, Maximilian Ilse, Shruthi
Bannur, Daniel C Castro, Anton Schwaighofer, Matthew P
Lungren, et al. Rad-dino: Exploring scalable medical
image encoders beyond text supervision. arXiv preprint
arXiv:2401.10815, 2024. 1, 2

[23] George Shih, Carol C Wu, Safwan S Halabi, Marc D
Kohli, Luciano M Prevedello, Tessa S Cook, Arjun Sharma,
Judith K Amorosa, Veronica Arteaga, Maya Galperin-
Aizenberg, et al. Augmenting the national institutes of health
chest radiograph dataset with expert annotations of possi-
ble pneumonia. Radiology: Artificial Intelligence, 1(1):
e180041, 2019. 1

[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2

[25] Dequan Wang, Xiaosong Wang, Lilong Wang, Mengzhang
Li, Qian Da, Xiaoqiang Liu, Xiangyu Gao, Jun Shen, Junjun
He, Tian Shen, et al. A real-world dataset and benchmark for
foundation model adaptation in medical image classification.
Scientific Data, 10(1):574, 2023. 1

[26] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mo-
hammadhadi Bagheri, and Ronald M Summers. Chestx-
ray8: Hospital-scale chest x-ray database and benchmarks on
weakly-supervised classification and localization of common
thorax diseases. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2097–2106,
2017. 1, 2

[27] Junfei Xiao, Yutong Bai, Alan Yuille, and Zongwei Zhou.
Delving into masked autoencoders for multi-label thorax dis-
ease classification. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pages
3588–3600, 2023. 1, 2

[28] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin
Bao, Zhuliang Yao, Qi Dai, and Han Hu. Simmim: A simple
framework for masked image modeling. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 9653–9663, 2022. 1, 2


	Datasets and Baselines
	Datasets
	Baselines

	Implementation Details
	Pre-training
	Analytical Experiments
	Fine-tuning

	Numerical Results

