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A. Dataset

The echocardiography dataset used in this study was col-
lected during routine clinical examinations, where certified
sonographers performed ultrasound scans (M5S probe, GE
Vivid E7 machine) using a probe mounted on a Franka
Panda robot arm. During each scan, both the ultrasound
videos (30 fps) and the corresponding probe poses were
simultaneously recorded. All subjects in the dataset were
healthy adult males. The data collection process was con-
ducted in compliance with ethical guidelines and was re-
viewed and approved by the relevant institutional ethics
committee.

This study utilizes a subset of 356 scans curated from
the dataset, comprising approximately one million images
and corresponding ultrasound probe poses. Each scan lasts
several minutes, during which the sonographer maneuvers
the probe and examines the heart from various views.
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Figure A1. Ten standard planes.

For the probe guidance task, we consider ten target
standard planes recommended by the American Society of
Echocardiography [13], as shown in Figure A1. These
planes include: Parasternal Long-Axis (PLAX), Paraster-
nal Short-Axis Aortic Valve (PSAX-AV), Pulmonic Valve
(PSAX-PV), Mitral Valve (PSAX-MV), Papillary Mus-
cles (PSAX-PAP), Level of Apex (PSAX-APEX), Apical
Four-Chamber (A4C), Apical Five-Chamber (A5C), Apical
Three-Chamber (A3C), and Apical Two-Chamber (A2C).
Professionals manually annotate the timestamps and frames
corresponding to these planes, which serve as the ground
truth for the probe guidance task. The dataset is divided
into separate training (284 scans) and testing (72 scans) sets,
with no overlap of individuals between the two.

B. Tasks and Baselines

The probe guidance task in our study involves predicting
the probe’s movement toward ten standard planes. The pre-
diction can rely on either a single image or incorporate past
visual-motion data. Specifically, in an ultrasound scan com-
prising T frames, represented as {It,pt}Tt=1, experts iden-
tify the timestamps at which the ten standard planes are ob-
served, denoted as s1, s2, . . . , s10. For each timestep t with
image It and corresponding pose pt, the relative pose to the
k-th standard plane is computed as a(k)

t = psk · p−1
t . The

model’s objective is to predict these movements at based
on the available visual-motion data.

The probe pose is represented in six degrees of freedom
p ∈ R6, where the first three components represent trans-
lations (x,y,z) in millimeters, and the last three correspond
to rotations (yaw, pitch, roll) in degrees. For model eval-
uation, we calculate the mean absolute error separately for
translation and rotation components, as detailed in Table 1.

We employ two evaluation protocols (single-frame and
sequential) in our study, as described in Section 5.2. Below,
we provide a detailed introduction to each protocol.

B.1. Single-Frame Protocol

In the single-frame protocol, the model predicts the probe’s
movement toward all ten standard planes using a single
ultrasound image as input. This setup evaluates the rep-
resentation quality of pre-trained visual models in a cost-
efficient manner. Two-layer MLPs are appended to the pre-
trained backbones, and the entire model undergoes full fine-
tuning. The evaluation metric is computed as the average
error across all frames in the test set. To improve evaluation
efficiency, the frame rate is reduced to 6 fps.

In this protocol, we evaluate the performance of our
visual encoder, pre-trained using world modeling tasks,
against a diverse selection of pre-trained models. These in-
clude DeiT [15], DINOv2 [14], BioMedCLIP [16], LVM-
Med [12], US-MoCo [4], US-MAE [9], USFM [11],
EchoCLIP [5]. For consistency, we use the ViT-Small vari-
ant of each method whenever available. Below, we provide
an overview of these baselines:
• DeiT [15] is a family of vision transformers trained on

the ImageNet dataset [6].
• DINOv2 [14] is a state-of-the-art self-supervised vision

foundation model trained on a wide range of general-
domain images. The training algorithm mainly follows
DINO [2] and iBOT [17].



• BioMedCLIP [16] is a multimodal biomedical founda-
tion model pre-trained on 15 million medical image-text
pairs using contrastive learning. We utilize only the visual
encoder component of this model for our comparisons.

• LVM-Med [12] employs a graph-matching formulation
for contrastive learning, enabling it to integrate multiple
medical imaging modalities, including ultrasound, into a
single versatile framework.

• US-MoCo [4] is an adaptation of the MoCo framework
to our dataset. MoCo employs a momentum encoder to
create a dynamic dictionary for stable and effective rep-
resentation learning. We pre-train a ViT-Small model on
our ultrasound dataset using the MoCov3 codebase, train-
ing for 150 epochs with a learning rate of 1.5 × 10−4,
weight decay of 0.1, and batch size of 1024.

• US-MAE [9] is an adaptation of the MAE framework
to our dataset. MAE is an encoder-decoder framework
for mask image modeling. For this adaptation, we train
a ViT-Small with a four-layer decoder, a masking ratio
of 0.75, over 300 epochs. The training setup includes a
learning rate of 6×10−4, weight decay of 0.05, and batch
size of 1024.

• USFM [11] is an ultrasound-specific vision foundation
model trained on over 2 million ultrasound images using
a spatial-frequency dual mask modeling approach.

• EchoCLIP [5] is a multimodal foundation model for
echocardiogram interpretation. The model is trained on
more than 1 million ultrasound image-text pairs using
contrastive learning. We utilize only the visual encoder
component of this model for our comparisons.

B.2. Sequential Protocol

The sequential protocol simulates a deployment scenario,
where the model predicts the probe’s movement toward un-
visited planes based on past visual-motion data up to the
current timestep (visited planes are excluded from the pre-
diction error calculation). It provides a more holistic assess-
ment of probe guidance frameworks. In this setting, we use
our pre-trained visual encoder as the backbone for all base-
lines. Specifically, at the timestep t of a scan, the model uses
historical visual-motion data before t to predict the standard
planes that are yet to be visited. The history data Ht and the
target plane indices Kt are defined by:

Ht = {(It′ ,pt′)|t′ < t},
Kt = {k|sk ≥ t},

(1)

where sk is the timestep when the k-th plane is visited.
To construct the model inputs, we sample N visual-motion
pairs {Iti ,pti}Ni=1 from Ht using a decayed density sam-
pling rate. This approach ensures that recent observations
are prioritized while retaining a representative selection of

past data. The sampled timesteps ti are computed as:

ti = Round

(
t+

t

αN
log

i

N

)
, i = 1, . . . , N, (2)

where α is a scaling factor. By default, we sample N = 8
frames from the history with α = 0.4. If the history con-
tains fewer than eight frames, we allow repeated sampling
to meet the required count. To ensure a symmetric evalua-
tion, we assess the model in both forward and reverse direc-
tions for each scan. In the reverse direction, the scan begins
at the last frame. The historical data H̃t and target plane
indices K̃t at timestep t are defined as:

H̃t = {(It′ ,pt′)|t′ ≥ t},

K̃t = {k|sk < t}.
(3)

The final error metric is averaged over both forward and
reverse directions and all timesteps across the scans. For
computational efficiency, the frame rate is reduced to 3 fps
during this evaluation.

In this protocol, we evaluate the complete EchoWorld
framework, which incorporates the proposed motion-aware
attention mechanism, by comparing it against existing
probe guidance frameworks. These include US-GuideNet
[7], Decision-Transformer [3], and Sequence-aware Pre-
training [10]. To ensure a fair comparison and isolate the
impact of our motion-aware modeling, all baselines use the
same visual encoder. The visual encoder extracts average-
pooled image features, which are subsequently passed to the
respective probe guidance frameworks. Below, we provide
detailed descriptions of these baselines:
• US-GuideNet [7] is originally designed for freehand ob-

stetric ultrasound probe guidance. In our implementation,
we adopt its model design, which processes sequential in-
puts in the form:

{I1,p1→2, I2,p2→3, I3, . . . , IN}. (4)

Here, pi→i+1 denotes probe movements between consec-
utive frames. Visual and motion features are projected
and concatenated before being aggregated using a gated
recurrent unit (GRU).

• Decision-Transformer [3] models trajectories within a
Markov Decision Process using a causal transformer. For
our task, we adapt this architecture by feeding interleaved
states (images) and actions (probe movements) using the
same input structure as Equation (4). The interleaved se-
quence is passed through a two-layer causal transformer,
with the output of the final token feeding into a guidance
prediction head for downstream tasks.

• Sequence-aware Pre-training [10] utilizes a bidirec-
tional transformer to process interleaved visual-motion
sequences, adhering to the same input format as Equation



Algorithm 1 PyTorch-style pseudocode for motion-aware
attention.

# B: batch size
# N: number of frames
# D_img: dimensionality of the image features
# D_mo: dimensionality of the motion features
# D: dimensionality of attention features
# x_img: image features shaped (B, N, D_img)
# x_motion: motion features shaped (B, N, N, D_mo)

def motion_aware_attn(x_img, x_motion):
# expand image features
x_img_exp = x_img.unsqueeze(1).expand(B,N,N,D_img)

# compute query, key, and value
Q = mlp_q(x_img) # BxNxD
K = mlp_k(concat(x_img_exp, x_motion)) # BxNxNxD
V = mlp_v(concat(x_img_exp, x_motion)) # BxNxNxD

# perform attention
logits = einsum('bid,bijd->bij', Q,K) / (D ** 0.5)
attn = softmax(logits, dim=-1)
return einsum('bij,bijd->bid', attn, V)

(4). The model is pre-trained using a visual-motion mask
modeling strategy to enhance historical data aggregation.
During fine-tuning, an extra mask token is appended to
the sequence for probe movement prediction.

C. Implementation Details
C.1. Pre-training

Architecture and optimization. EchoWorld is pre-trained
from scratch by jointly performing spatial and motion world
modeling. The context encoder is a ViT-S/16, while the tar-
get encoder is an exponential moving average (EMA) of the
context encoder with a starting decay rate of 0.996, which
gradually increases to 1.0 following a cosine schedule. The
predictor is a 6-layer transformer with a width of 384. Input
images are resized to 224×224. The model is optimized us-
ing the AdamW optimizer with β1 = 0.9 and β2 = 0.999,
an initial learning rate of 10−3, and a weight decay of 0.05.
Training spans 300 epochs, with a 40-epoch linear warm-up
followed by cosine decay. The default batch size is 1024,
and training takes approximately 14 hours on four A100
GPUs.

Spatial world modeling. Following [1], the context im-
age is masked using four rectangular blocks with scales
ranging from (0.15, 0.2). The visible regions are further
reduced by up to 15%, increasing the task’s difficulty.
Only visible patches are processed by the context encoder,
whereas the target encoder takes the entire image as input.
In the predictor, mask tokens, enriched with positional en-
codings corresponding to the masked patches, are concate-
nated with context tokens. A smoothed L1 loss is computed
between the predicted and target outputs at the masked lo-
cations.

Motion world modeling. We randomly sample two
frames Ia, Ib along with their respective poses pa,pb from
a scan and compute their relative pose difference pa→b =

pb · p−1
a . Frame Ia is used as input to the context encoder,

while frame Ib serves as the target. The motion encoder Aψ
is a two-layer MLP with a hidden dimension of 384, produc-
ing motion feature za→b = Aψ(pa→b). These features are
embedded into a mask token and concatenated with context
tokens before being passed to the predictor. The predictor
generates ĥy , a prediction of the average-pooled target fea-
ture hy . Before computing the InfoNCE loss, ĥy and hy are
projected using projectors P and P ′, where P ′ is an EMA
of P . For simplicity, we skip the projector in Equation (4)
of the main paper. The loss, including the projector, is de-
fined as:

Lmotion

= − 1

B

B∑
i=1

log
exp(P (ĥyi)

⊤ · P ′(hyi)/τ)∑
j exp(P (ĥyi)

⊤ · P ′(hyj )/τ)
,

(5)

where B is the batch size and τ is the temperature (set to
0.1 by default). The loss can be symmetrized by swapping
the context and target roles.

Joint modeling. The integration of spatial and motion
world modeling follows a unified pipeline. Specifically,
for the frames Ia and Ib used in motion modeling, some
regions in the context frame Ia are masked. The predic-
tor simultaneously performs two tasks: (1) reconstructing
masked regions in the context frame and (2) predicting fea-
tures of the target frame based on motion information. The
predictions and targets for these tasks are defined as:

hx = fθ(Mask(Ia,M)),

ĥspatial
y = gϕ(hx + px; {m+ PE(c)}c∈M ),

hspatial
y = {f ′

θ′(Ia)c}c∈M ,

ĥmotion
y = gϕ(hx;m+ za→b),

hmotion
y = AvgPool(f ′

θ′(Ib)),

(6)

where ĥspatial
y , hspatial

y are prediction and target for spa-
tial modeling, and ĥmotion

y , hmotion
y are for motion mod-

eling. The total loss combines both objectives: Ltotal =
Lspatial + λLmotion, where λ = 0.1 balances the scale of the
two losses.

C.2. Fine-tuning

Motion-aware attention. Algorithm 1 provides the pseu-
docode for the proposed motion-aware attention mecha-
nism. The pre-trained visual encoder fθ and motion en-
coder Aψ extract visual and motion features, hi and zi→j ,
for frames i, j ∈ [1, N ]. Two MLPs process their concate-
nation to generate keys K(i)

j and values V (i)
j as follows:

K
(i)
j = MLPk(hj , zi→j), V

(i)
j = MLPv(hj , zi→j). (7)



Queries are derived from the image features using another
MLP: Qi = MLPq(hi). The model applies scaled dot-
product attention with four attention heads and a hidden di-
mension of 384. The resulting attention outputs are passed
through ten independent MLPs to predict probe movements
to ten standard planes relative to the current pose.

Optimization. The model is optimized using AdamW
with β1 = 0.9, β2 = 0.999, and an initial learning rate
of 1 × 10−4. Training uses 15,000 iterations with a batch
size of 256 for single-frame and 64 for sequential protocols.
Additional settings include weight decay of 0.05, drop path
of 0.1, layer-wise learning rate decay of 0.65, and random
brightness/contrast augmentations.

C.3. Visualizations

World model predictor outputs (Figure 7). To better un-
derstand the predictor outputs of our world model, we train
a diffusion model to reconstruct target pixel values con-
ditioned on the representation ĥy produced by the predic-
tor. This guidance representation is first projected to a 512-
dimensional vector, which is then integrated into the diffu-
sion model via conditional batch normalization layers [8].
For spatial world modeling, the diffusion model is condi-
tioned on the average-pooled predictor outputs correspond-
ing to the masked regions. For motion world modeling, the
diffusion model takes the predictor output vector as its con-
ditioning signal. We train separate diffusion models for
the two world modeling tasks, with both models trained
for 300,000 iterations and generating images at resolution
128× 128.

Analysis of attention scores (Figure 8). We evaluate
the proposed motion-aware attention mechanism by visu-
alizing attention scores across a set of eight visual-motion
pairs. Some of these pairs include noisy frames with min-
imal usable information. For this input, we visualize the
8×8 attention score matrices across all four attention heads.
Each matrix entry, located at the i-th row and j-th column,
represents the attention score of query i attending to key j.

Analysis of plane features (Figure 9). We extract
average-pooled representations of all standard plane images
identified by professionals in the training set. These repre-
sentations are visualized in a 2D space using t-SNE. The
visualization highlights how well the model clusters images
of similar planes.
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Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al.
Dinov2: Learning robust visual features without supervision.
arXiv preprint arXiv:2304.07193, 2023. 1

[15] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
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