
AnyMoLe: Any Character Motion In-betweening
Leveraging Video Diffusion Models

Supplementary Material

Overview
In this supplementary material, we present implementation
details in Section A. Section B presents the architecture of
scene-specific joint estimator model. Section C presents ad-
ditional results. Visual results and additional comparisons
are presented in the supplementary video. Our code will be
publicly released upon acceptance.

A. Implementation Details
A.1 ICAdapt
As described in the main paper, to train Dadp, images are
rendered at 30 fps using four different views (N = 4) of
context frames. From these four videos, we sample 16-
image clips at 30 fps, 15 fps, and 10 fps using frame in-
tervals of 1, 2, and 3, respectively. This fps information is
passed through the fps embedding layer of Dadp as a control
parameter for video speed. The dataset gathering process is
outlined in Algorithm 1. Using these clips, each consisting
of 16 images, ICAdapt is conducted for 500 steps with a
learning rate of 1e-5, which requires approximately one and
a half hours on an Nvidia A6000 GPU. During the ICAdapt
process, the video captioning model [4] is used once, with
the same text prompt applied throughout the entire process,
because the animation is played within a single scene.

A.2 Scene-specific joint estimator
Scene-specific joint estimator Escene is trained using three
views (N = 3) in addition to the rendered keyframes with
the weight w = 3. As shown in Figure 5 of the main pa-
per, 2D and 3D features are extracted from rendered images.
For 2D features, DINOv2 [3] is used. Recently, Darcet
et al. [1] showed that training DINOv2 with register tokens
can reduce high-norm outliers, leading to improved stabi-
lization. Thus we employed them for 2D features. For
3D-aware features, we employed another DINOv2 variant
Fit3D [5], which is also DINOv2 varient, finetuned at 3D
scenes. The training was conducted for 3500 steps, which
required around 3.5 hours on an Nvidia A6000 GPU. The
detailed model architecture of Scene-specific joint estima-
tor will be presented in Section B.

A.3 Two-stage Inference
Two-stage inference is conducted to generate video frames
that follow the given context and produce smooth motion.
This process is written in Algorithm 2. In the first stage,
a coarse video at 5 fps is generated, with each inference

Algorithm 1 Gathering video clips from context frames

Require: N : Number of views (e.g., N = 4)
Require: Nfpv: Total number of frames per view
Require: k: Number of frames per clip (e.g., k = 16)
Require: S: List of frame intervals for sampling (e.g., S =

[1, 2, 3])
Ensure: Clips: A list of sampled clips

1: Initialize Clips← []
2: for v ← 1 to N do ▷ Iterate through all views
3: for all s ∈ S do ▷ Iterate through all sampling
4: for start← 0 to Nfpv − k · s do
5: clip← [start+i·s for i ∈ {0, 1, ..., k−1}]
6: Clips← Clips ∪ {clip}
7: end for
8: end for
9: end for

10: return Clips

covering a three second segment because Dadp outputs 16
frames at a time. In the second stage, a fine video at 15 fps
is generated, with each inference covering one second seg-
ment. The process ensures both contextual alignment and
smooth motion. We conducted an experiment to measure
inference time. As shown in Table 1, two-stage inference
has O(N) time complexity for input keyframes.

Table 1. Two-stage inference time for 15fps videos.

Generated frames 15 30 45 60 75 90
Inference time (Minutes) 2.43 3.58 4.78 5.97 7.13 8.08

A.3 Motion video mimicking
Motion video mimicking is performed to generate motion
that follows the generated video. We use joint loss, image
loss, and regularization loss, as described in Eq. 3 of the
main paper. The entire optimization process is conducted
in a single view (N = 1), over 100 steps per sequence.
This process is performed in batches to achieve faster opti-
mization. For an 8-second video with 2 seconds of context
frames, the batch size is 6, and the optimization process is
repeated 14 times to fill the in-between frames.

B. Model Architecture
Our scene-specific joint estimator, Escene, consists of a fea-
ture merger, heatmap decoder, and depth MLP. As shown
in Figure 1, our feature merger consists of convolutional
blocks and concatenation. The output of the feature merger,

1



Algorithm 2 Two-Stage Video Generation with Context Guidance

Require: Dadp: Fine-tuned video diffusion model
Require: I0, IN : First and last keyframes of the target video
Require: Total: Total time in seconds for the video to generate
Require: Im: Context frames for guidance, where M1 ≤ m ≤M2, M2 < N
Ensure: Final video with interpolated smooth motion

1: Stage 1: Coarse Video Generation with Contextual Interpolation
2: for tvid ∈ {0, 1, . . . , T otal − 3} do ▷ Iterate over each second (overlap occurs)
3: Initialize noisy latent znt

4: for t← T to 0 do ▷ Backward diffusion process
5: Denoise znt+1

to obtain znt

6: if conditioning then
7: Replace parts of znt with Evae(Im) + ϵt, where Im are guidance frames
8: Update znt

← z′nt
▷ Refine latents using guided inpainting

9: end if
10: end for
11: Decode zn0

to obtain coarse video In
12: Update Im to include In for future iterations
13: end for
14: Generate a coarse video with sparse frames: {I0, I1, . . . , IN−1, IN}
15: Stage 2: Fine Video Generation with Higher Frame Rate
16: for tvid ∈ {0, 1, . . . , T otal − 1} (smaller intervals) do ▷ Generate finer frames
17: Use Dadp with keyframes and generated frames from Stage 1 as guidance
18: Apply the same guided inpainting technique as in Stage 1
19: Generate intermediate frames between keyframes and coarse frames
20: end for
21: Combine all frames to produce a high-frame-rate video
22: return Final video

Figure 1. Architecture of scene specific joint estimator.

2



Figure 2. Additional results of the ablation study on video generation.

Figure 3. Additional results of the ablation study on video generation.

F , serves as input for both 2D joints and per-joint depth es-
timation. The heatmap decoder consists of convolutional
blocks with residual layers [2]. Here, we use a zero-
initialized convolutional block for the residual connection.

The heatmap decoder outputs heatmaps with the channel
size equal to the number of joints, H ∈ RB×Nj×wh×hh ,
where B is the size of the batch, Nj is the number of chan-
nels, which corresponds to the number of joints, and wh

and hh correspond to width and height, respectively. The
heatmap becomes the position of the estimated 2D joint
positions, J2D ∈ RB×Nj×2. We concatenate joint index
embedding, ejoint ∈ RB×Nj×1, which is analogous to
positional embedding, to the 2D joint to provide an addi-
tional cue for estimating the depth of each joint. After-
wards, as described in the main paper, we sample the feature
fx,y ∈ RB×1×1×C for each joint from F ∈ RB×wF×hF×C .

Here, wF and hF are the width and height of feature F , and
C is the number of channels. Because fx,y is sampled for
each joint, we concatenate and reshape these per-joint fea-
tures to be fprocessed ∈ RBNj×C . We reshape the 2D joint
position and its joint index embedding to be per-joint val-
ues, Jprocessed2D ∈ RBNj×3. We concatenate all of these
sampled features, 2D joint positions, and index embeddings
and pass them through the Depth MLP to estimate the per-
joint depth values.

C. Additional Results

We provide additional quantitative values computed by the
HL2Q metric with varying thresholds: 1/4, 1/2, 3/4, and full
in Table 2. The ”full” threshold corresponds to the original
L2Q, while the ”1/2” threshold indicates what we used as

3



Table 2. Quantitative results of H2Q variants and L2Q. Best scores are denoted in bold.

Character Humanoid Non-humanoid
Methods HL2Q (1/4)↓ HL2Q↓ HL2Q (3/4)↓ L2Q↓ HL2Q(1/4)↓ HL2Q↓ HL2Q (3/4)↓ L2Q↓
Ours 0.0019 0.0015 0.0014 0.0011 0.0016 0.0019 0.0024 0.0021
SinMDM 0.1526 0.0971 0.0636 0.0386 0.3664 0.2465 0.1979 0.1710
SinMDM* 0.1539 0.0981 0.0645 0.0390 0.3667 0.2467 0.1982 0.1713
TST 0.0028 0.0028 0.0069 0.0106 - - - -
ERQ-QV 0.0031 0.0028 0.0064 0.0109 - - - -

HL2Q in the main paper. Our method produced the best re-
sults across all variants of HL2Q and L2Q. For humanoid
characters, HL2Q values decreased as the filtering thresh-
old became larger, indicating that the rotations were more
precise at the near-leaf joints. However, no distinct pattern
or difference was observed for non-humanoid characters.

For additional qualitative results, we first present the
results of further visual ablation studies on video genera-
tion. As shown in Figures 2 and 3, our method generated
videos with smooth motion and no visible artifacts. Addi-
tionally, we visualized the results of Anymole on motion
in-betweening in Figures 4 and 5.

References
[1] Timothée Darcet, Maxime Oquab, Julien Mairal, and Pi-

otr Bojanowski. Vision transformers need registers. arXiv
preprint arXiv:2309.16588, 2023. 1

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016. 3

[3] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision.
2021. 1

[4] Keunwoo Yu, Zheyuan Zhang, Fengyuan Hu, Shane Storks,
and Joyce Chai. Eliciting in-context learning in vision-
language models for videos through curated data distribu-
tional properties. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pages
20416–20431, 2024. 1

[5] Yuanwen Yue, Anurag Das, Francis Engelmann, Siyu Tang,
and Jan Eric Lenssen. Improving 2d feature representations by
3d-aware fine-tuning. In European Conference on Computer
Vision, pages 57–74. Springer, 2025. 1

4



Figure 4. Visual results of generated in-between motion frames.

5



Figure 5. Visual results of generated in-between motion frames.

6


