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Supplementary Material

Overview

In this supplementary material, we present details of model
architecture in Section A. Section B covers details of the
experiments. Section C presents additional details and ex-
planation of our applications. Section D presents an ex-
periment on dataset scaling. Section E present additional
experiments. Lastly, Section F discusses about the social
impact.

A. Architecture of Geometry Adapter

Our geometry adapter, Φgeo, consists of a lightweight MLP
that receives the viewing direction vd ∈ R3, the Tri-plane
feature F̂ ′

tri ∈ R32, the segmentation label of the geometry
decoder Seg ∈ R15, and the density σ ∈ R1 in the Figure
2 of the main paper. Therefore, the input dimension is 51,
and the output dimension is the number of new mask labels,
which in our experiments were 17 for the Base layout and
19 for the Nose and Eyes layouts.

To evaluate whether this simple MLP can effectively fuse
different features compared to attention modules, we con-
ducted an additional study to identify any differences. The
alternative architecture replaced the first layer of our Φgeo

with multi-head self-attention, where the number of heads
was set to 4 as shown in the Figure 1. The comparison
was conducted under the same conditions as in the abla-
tion study in Section 4.4 of the main paper. The evaluation
results show that switching to the multi-head self-attention
module did not have a meaningful effect (0.847 mIoU with
training on 10 data, compared to 0.850 with our MLP) but
did increase the training time. Therefore, we chose the MLP
architecture for Φgeo.

Figure 1. Visualization of our MLP network and multi-head self-
attention network which are used as the geometry adapter.

B. Additional Details of Experiments
B.1 Tri-plane Mixing
We conducted tri-plane mixing experiments in Section 4.3
of the main paper and found a balance between the tri-plane
mixing ratio and augmentation effectiveness. We consid-
ered two variables, mIoU and L1, each representing the re-
tention of semantic information and the variance of infor-
mation, respectively. Using these variables, we identified
the top layers for each variable, as shown in Table 1. For
instance, referring to Table 1, when N=2 layers were mixed
for the top mIoUs, we combined layers 13 and 14. When
N=5 layers were mixed for mIoU, we combined layers 10
through 14 (13, 14, 11, 12, and 10). Similarly, when N=5
layers were mixed for the top L1, we combined layers 1
through 5.

Table 1. List of the top 7 layers in mIoU and L1, respectively

mIoU L1
13 5
14 1
11 2
12 4
10 3
9 6
8 7

B.2 Baseline Comparisons
We compared our method with two masked based face edit-
ing methods: NeRFFaceEditing [3] and IDE-3D [5]. For
NeRFFaceEditing, we fine-tuned the model by training only
the geometry decoder while keeping the other components
fixed. This approach was necessary because training the en-
tire model with only 10 data samples, as in our method, led
to overfitting. Similarly, for IDE-3D, we trained only the
semantic decoder. Note that the geometry decoder in NeRF-
FaceEditing and the semantic decoder in IDE-3D serve sim-
ilar roles, though they are named differently in their respec-
tive papers. In addition to the comparison results included
in the main paper, we present additional editing results pro-
duced by our FFaceNeRF and two baselines, in the upper
part of Figure 2.

B.3 Comparisons with Other Editing Methods
Mask-based editing offers distinct advantages over other
face editing methods, particularly in its ability to achieve
detailed and precise modifications. Unlike point-based,



Figure 2. Additional comparison results between our method, two baseline methods, and two additional methods. NeRFFaceEditing
showed degraded quality with texture shifts and incomplete editing, particularly on elements like clothing. IDE-3D failed to reconstruct
identity, FaceEdit3D failed to edit undefined regions, and InstructPix2NeRF exhibited limited control. In contrast, our method faithfully
edited the source image in accordance with the target mask.

text-based, or sketch-based approaches, mask-based meth-
ods enable fine-grained control by explicitly defining re-
gions for edits. To demonstrate this, we conducted addi-
tional experiments comparing our approach with text-based
and point-based editing methods [1, 4].

FaceEdit3D [1] is a point-based editing method that
warps the tri-plane to determine the editing direction in
the latent space. When using this method, use of exces-
sive control points may lead to distortions. To mitigate
this, FaceEdit3D allows to use predefined landmarks only,
making edits outside these points impossible. Instruct-
Pix2NeRF [4], a state-of-the-art text-based 3D face editing
method, can perform edits using natural language prompts.
Due to the nature of text prompts, controlling the range or
specificity of edits is challenging with this method. Sketch-
FaceNeRF [2] is a sketch based 3D face editing method,
that can either generate face from sketch and edit randomly
generated face using sketch. However this model does not

Figure 3. Gaze direction editing results of FaceEdit3D.

provide method to edit face from arbitrary face, therefore
we randomly generated a face and edit the images to visu-
alize.

Visual comparison results are shown in the lower part
of Figure 2. While FaceEdit3D [1] successfully edited the
mouth, it failed to edit clothing because there were no con-
trol points on the neck or clothing. Similarly, gaze direction



Figure 4. Gaze direction editing results of SketchFaceNeRF. Left
shows source image and corresponding sketch, while right shows
edited sketch and corresponding output face.

could not be edited, as shown in Figure 3. On the other
hand, InstructPix2NeRF [4] was able to generate both sam-
ples, but the generated images did not consistently follow
the given prompts. Additionally, similar contexts with dif-
ferent prompts often produced inconsistent outputs. Visual
results of SketchFaceNeRF are presented in Figure 4. Start-
ing from the randomly generated image (top left), we edited
the image using two sketches (middle) to modify the eye
gaze while removing the glasses. Although the results on
the top right successfully removed the glasses, both trials
failed to modify the eye gaze because the pupil is a very
small region in the overall sketch, limiting to change the
eye gaze using the sketch based model.

B.4 Statistical Analysis

We conducted statistical analysis on user study to verify
significance compared to baselines. We conducted a Chi-
Square Goodness-of-Fit test followed by a two-proportion
z-test as a post-hoc analysis. Null hypotheses for all evalu-
ation metrics were rejected in Chi-Square Goodness-of-Fit
test (all p<0.001). The post-hoc analysis was performed
only to compare our method with the competitors’. As
shown in Figure 5, all differences in choices were statis-
tically significant (p<0.001), denoted by ***.

Figure 5. User study analysis results.

Figure 6. Visualization of augmentation results, which show color
changes but preservation of the semantics of the source image.

C. Additional Details of Applications

C.1 Partial Style Transfer
As stated in the main paper, our method can be utilized for
a partial style transfer application. We extracted the mean
and variance of the tri-plane from style images, and denor-
malized the source tri-plane for the full style transfer. Here,
I indicates the source image and Istylized indicates the fully
stylized image. By passing the normalized source tri-plane
to Φgeo followed by Ψgeo, we can obtain the resulting mask.
A certain mask Mpart (such as eyes, iris, hair, or mixture of
them) can be directly applied to Istylized for partial styliza-
tion. This can be written as follows:

Madd =

parts∑
Mparts, Mapply = smoothw(Madd)

Ipartial =

parts∑
Mapply ∗ Istylized + (1−Mapply) ∗ I

(1)

where Madd is simply added masks across parts, smoothw
is linear smoothing applied to the edge of the mask with
the width of w, where it was set to 11 in our application.
Additional results are presented in Figure 9.

C.2 FFaceGAN
To demonstrate the effectiveness of our geometry adapter,
feature injection, and LMTA, we conducted experiments by
incorporating an adapter module and LMTA to the Dataset-
GAN [7], resulting FFaceGAN. For the adapter, we used the
same 15 BiseNet [6] labels as our FFaceNeRF for the pre-
training of DatasetGAN. After training DatasetGAN with
the pretrained network, we froze all the parameters and
added a trainable adapter, which receives the output of the
original segmentation labels and the StyleGAN features as
input. Because DatasetGAN uses a StyleGAN backbone
instead of EG3D, there are no view direction or density val-
ues. Therefore, we only used the output label of the origi-
nal segmentation network and the StyleGAN features. We



Figure 7. Number of data used for training and resulting mIoU
values. The mIoU value increases as the number of training data
used becomes larger.

trained our adapter in the same way as the original Dataset-
GAN.

For the augmentation strategy LMTA, we randomly sam-
pled latent w′+ and mixed with w+ from training set at the
last five layers, as performed for the original FFaceNeRF.
To assess whether mixing the last five layers still provides
correct augmentation, we added visualizations in Figure 6.
The results indicate that the mixing strategy of FFaceNeRF
can still be applied to DatasetGAN, changing the color
without altering the semantics. The results of FFaceGAN
are shown in Figure 10, demonstrating that our adapter
and augmentation strategy can effectively enhance perfor-
mance, even with different architectures.

D. Dataset Scaling
We conducted an additional study to investigate how the
number of data used to train our model affects the per-
formance. We varied the number of training data n ∈
[1, 2, 5, 10, 20, 30, 40] from the Base dataset. As shown in
Figure 7, the mIoU value increased as the number of train-
ing data increased up to 40. Even with a small dataset of 5
or 10 samples, the performance was already acceptable for
use, and it improved incrementally as the number of training
samples increased beyond 20.

E. Additioanl experiments
E.1 Additional Data
To further validate our model, we built a new layout called
Mouth by adding teeth, jaw, and chin components. The
current FFaceNeRF model was pretrained on 15 layouts
and supports four different layouts for training and testing:
Base, Eyes, Nose, and Mouth. While Base has 17 lay-
outs, Eyes and Nose have 19 layouts, and Mouth has 20
layouts. Results produced using our Mouth layout for ac-
cessory adoption and teeth exposure are shown in Figure 8.

Furthermore, our original Base dataset consisted of a
training set of 40 examples and a test set of 22 examples.

Figure 8. Editing results trained on new label ”Mouth”. Top: Ac-
cessories adoption, Bottom: Teeth.

Table 2. Quantitative results of ablation study on mask generation
with a different number of training data. The highest scores are
denoted in bold.

Number of Data 1 5 10 20 30

Ours 0.711 0.832 0.850 0.855 0.860
w/o injection 0.741 0.806 0.835 0.844 0.847

We built an expanded dataset by adding an additional 20
test examples to ensure robust testing. In addition to the
original dataset, we made this additional dataset publicly
available.

F. Social Impact
The introduction of FFaceNeRF presents a substantial posi-
tive impact on fields such as personalized medical imaging,
virtual reality, and the creative arts by allowing precise and
customizable 3D face editing with minimal training data.
However, the potential for misuse, such as in the creation
of identity manipulation, underscores the need for careful
and responsible usage. While the overall societal impact of
FFaceNeRF is positive, we will include appropriate ethical
guidelines and safeguards to our released code. This will
ensure that the technology is used to drive innovation and
enhance user experiences while minimizing potential risks
and protecting individuals’ privacy and security.



Figure 9. Visualization of partial style transfer.

Figure 10. Comparison of results produced by our FFaceGAN and the original DatasetGAN. This indicates effectiveness of our adapter
and augmentation strategy.



Figure 11. Additional results of FFaceNeRF in multi-view.
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