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Our code is publicly available here.

A. Illustrations of RL and GFlowNets
In this section, we summarize the key difference between
Reinforcement Learning (RL) and GFlowNets in more de-
tail. GFlowNets [3] is designed to learn a stochastic policy
that generates samples proportional to their rewards (i.e.,
p(x) ∝ R(x)), while RL aims to learn a policy that maxi-
mizes the reward function as illustrated in Figure 8. Learn-
ing a policy that samples proportional to the reward func-
tion leads to capturing multi-modal distribution and discov-
ering high-quality and diverse candidates, which is partic-
ularly beneficial when the reward proxy is inaccurate [3],
and their connections have been studied in [8, 14, 48],
which shares equivalences and similarities with entropy-
regularized RL [30] in tree-structured sequence generation
and directed acyclic graph problems [16, 22]. In prompt
adaptation tasks, conventional RL-based approaches [13]
based on PPO [43] that naively maximize a reward function
can lead to reward overoptimization and hinder generaliz-
ability to different text-to-image diffusion models, while it
is more desirable to generate not only effective and but also
diverse prompts.

Figure 8. Comparison of the learning objective of reward-
maximizing RL and reward-matching GFlowNets.

B. Experiment Setting Details
In this section, we present details of experiment settings.

B.1. Data Preparation
We strictly follow the procedure of Promptist [13] to pre-
pare training and evaluation datasets. Additionally, we in-

troduce a challenging dataset using ChatGPT [32] interface
to generate brief prompts that describe images. Specifically,
we use the following prompt to query ChatGPT for short
image descriptions:
• Generate N sentences describing photos
/pictures/images with length around 5.

Below are a few example prompts generated by ChatGPT:
• A bird sitting on a branch.
• A tree under a sky.
• A car drives on a road.
• A train moves through the city.
• A boat sails on a lake.

B.2. Baselines
In this section, we provide more details on the baselines
used for our experiments.

Supervised Fine-Tuning. We fine-tune the pretrained
GPT-2 policy model with supervised learning on a set of
prompt pairs of original user inputs and manually engi-
neered prompts provided by Promptist [13]. As a default,
we use the pretrained weights of SFT publicly available1.

Promptist. We train the policy with a PPO-based ap-
proach where the policy is initialized with the supervised
fine-tuned model. As a default, we use the pretrained
weights of Promptist publicly available to ensure a fair com-
parison. To evaluate the generalizability of different reward
functions, we train the policy with the same hyperparameter
configurations.

Rule-Based. Based on the observation that Promptist
mostly generates similar postfixes for optimization, we
build a rule-based method that appends the most frequently
used postfixes in Promptist to the initial prompt. Below are
a few example postfixes we used for evaluation:
• intricate, elegant, highly detailed,
digital painting, artstation, concept
art, sharp focus, illustration, by
justin gerard and artgerm, 8 k.

• by greg rutkowski, digital art,
realistic painting, fantasy, very
detailed, trending on artstation.

• highly detailed, digital painting,
artstation, concept art, sharp focus,
illustration, art by greg rutkowski
and alphonse mucha.

1https://github.com/microsoft/LMOps/tree/main/promptist
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GFlowNets. We train a vanilla GFlowNets policy with
TB [28] objective. As our task is a conditional generation
task, a naive implementation of TB should directly estimate
a conditional partition function, Zθ(x), which makes learn-
ing highly unstable [19]. For pratical implementation, we
use VarGrad [39] objective to fine-tune the policy, which is
widely used for reducing variance in GFlowNets literature
[49, 56].

For each initial prompt x sampled in the minibatch, we
generate k = 16 on-policy samples y(1), · · · ,y(k) with the
forward policy. Each sample can be used to implicitly esti-
mate logZ(x):

log Ẑ(x)(i) = R(x,y(i))−
T∑
t=1

logPF (y
(i)
t |y

(i)
0:t−1,x; θ)

Then we minimize the sample variance across the minibatch
as follows:

L(x; θ) = 1

k

k∑
i=1
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k

k∑
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DPO-Diff. Wang et al. [50] proposed a discrete prompt
optimization for diffusion models (DPO-Diff), which is a
gradient-based optimization method for discovering effec-
tive negative prompts to generate user-aligned images. It
first generates a compact subspace comprised of only the
most relevant words to user input with ChatGPT API, then
uses shortcut text gradients to efficiently compute the text
gradient for optimization. As the original reward function
of DPO-Diff is a spherical clip loss, we replace the reward
function the same as Eq. (1). As we consider a setting where
the reward function is a black-box function, we use the evo-
lutionary search module suggested by the paper for a fair
comparison. Please refer to the paper for more details.

B.3. Training and Evaluation
For training, we initialize the policy with the SFT policy
before the GFlowNet fine-tuning. To parametrize the flow
function, we use a separate neural network that takes the
last hidden embedding of the prompts as input and outputs a
scalar value. We conducted all experiments with 4 NVIDIA
A100 GPUs, and the training took approximately 24 hours.

For evaluation, we study two metrics: reward and di-
versity. To compute the reward, we generate N = 16
prompts for each initial prompt via beam search with a
length penalty of 1.0. Then, we generate three images per
prompt to compute the reward. We aggregate the max score
among N prompts and compute the average across initial
prompts.

Reward(Deval) :=
1

|Deval|
∑

x∈Deval

max
y∼pθ(·|x)

(r(x,y))

To compute diversity, we embed the generated prompts us-
ing MiniLMv2 [51] encoder, compute the average pairwise
cosine distance between embeddings of the prompts, and
compute the average across initial prompts. For all evalua-
tions, we conduct experiments with four random seeds and
report the mean and standard deviation.

The input format for both training and evaluation is
[Initial Prompt] Rephrase:, following Promp-
tist [13]. The hyperparameters we used for modeling and
training are listed in Table 4. We conduct several abla-
tions studies on the impact of various hyperparameters in
Appendix D.

Table 4. Hyperparameters for Training PAG.

Parameters Values

Batch size 64
Buffer size 5000
Optimizer Adam
Training Steps 1× 104

Learning Rate (γ) 1× 10−5 (Policy), 1× 10−4 (Flow)
Temperature (β) 0.05
Reset Period (M ) 2000

B.4. Robustness across Different Reward Functions
To evaluate the robustness of our framework in terms of
different reward functions, we use two widely-used reward
functions in diffusion alignment: ImageReward [54] and
HPSv2 [53]. We provide a detailed description of each
function below.

ImageReward ImageReward is a general-purpose text-
to-image preference reward model trained with pairs of
prompts and images. To compute the score, ImageReward
extracts image and text embeddings using BLIP [23] en-
coder and combines them with cross attention, and uses
MLP to generate a scale value for preference comparison.

HPSv2 HPSv2 is a scoring model that accurately predicts
human preferences on generated images. To accurately pre-
dict the score, it fine-tunes the CLIP [36] with the HPDv2
dataset, a large-scale dataset that captures human prefer-
ences on images from various sources.

B.5. Transferability to Different Text-to-Image Dif-
fusion Models

To validate the transferability of our framework to different
text-to-image diffusion models, we prepare several widely-
used text-to-image diffusion models: SD v1.5 [40], SSD-1B
[12], SDXL-Turbo [42], and SD3 [10]. As SDXL-Turbo
and SD3 models do not align with DPM solver [26], we use



Table 5. Performance of prompt generated by each method. Aes score indicates aesthetic quality improvement compared to the image
generated with the original input. Experiments are conducted with four random seeds, and mean and standard deviation are reported. Bold
represent the best entry.

Method
Lexica DiffusionDB COCO ChatGPT

Reward Diversity Reward Diversity Reward Diversity Reward Diversity

Initial Prompt -0.16 ± 0.03 - -0.22 ± 0.02 - -0.35 ± 0.01 - -0.42 ± 0.03 -

SFT 0.64 ± 0.02 0.13 ± 0.00 0.58 ± 0.01 0.13 ± 0.00 0.54 ± 0.07 0.11 ± 0.02 0.76 ± 0.03 0.19 ± 0.00
Promptist 0.76 ± 0.02 0.09 ± 0.00 0.76 ± 0.03 0.10 ± 0.00 0.65 ± 0.02 0.07 ± 0.00 0.76 ± 0.03 0.12 ± 0.00
Rule-Based 0.72 ± 0.02 0.26 ± 0.00 0.69 ± 0.02 0.15 ± 0.00 0.75 ± 0.01 0.12 ± 0.00 0.82 ± 0.03 0.17 ± 0.00
GFlowNets 0.96 ± 0.01 0.13 ± 0.00 0.85 ± 0.03 0.13 ± 0.00 0.73 ± 0.02 0.09 ± 0.00 0.63 ± 0.03 0.10 ± 0.00
DPO-Diff 0.13 ± 0.02 - 0.28 ± 0.06 - -0.03 ± 0.06 - -0.17 ± 0.03 -

PAG (Ours) 0.99 ± 0.05 0.32 ± 0.00 0.91 ± 0.04 0.33 ± 0.00 0.88 ± 0.02 0.32 ± 0.00 0.88 ± 0.04 0.32 ± 0.00

(a) Analysis on β (b) Analysis on M (c) Analysis on γ for flow function (d) Analysis on reset strategies

Figure 9. Extended ablation studies on various components of PAG.

a standard generation pipeline, which uses a PNDM sched-
uler [24] with 20 inference steps. Furthermore, as SDXL-
Turbo does not use the guidance scale, we set the guidance
scale to 0. for SDXL-Turbo, and 7.5 (default) for others.

C. Extended Main Results
In this section, we provide additional discussion and analy-
sis of our main experimental results.

C.1. Main Results
We summarize the main experiment results in Table 5 in-
cluding comparisons with DPO-Diff [50], a recent relevant
work. Note that as DPO-Diff tries to optimize negative
prompts and the initial prompt is always the same, it is
meaningless to compute diversity between prompts.

C.2. Discussion
As shown in the table, we observe that DPO-Diff shows
modest improvements in terms of the reward compared to
other baselines. We find that while DPO-Diff can effec-
tively improve the CLIP scores, it shows limited capability
in improving the aesthetic score.

D. Extended Ablation Studies
In this section, we include additional ablation studies that
complement our main text due to space limitations.

D.1. Analysis on β

First, we analyze the effect of inverse temperature β in
Eq. (8), which controls the balance between the task re-
ward term r(x,y) and the reference LM likelihood term
pref(y|x). As a default setting, we set β = 0.05.

To analyze the effect of β, we fine-tune the GFlowNet
policy with different β values: {0.01, 0.05, 0.1, 0.2}. As
shown in the Figure 9a, there are no significant differences
in terms of the performance with different β values while
using too small β, which leads to the policy focus on a high-
reward region, suffers from mode collapse similar to naive
GFlowNet and exhibits poor performance.

D.2. Analysis on M

We also conduct experiments by varying the flow function
reset period (M ) to analyze the effect of flow reactivation. If
we reset the flow function too frequently, it is hard to cap-
ture high-rewarding multi-modal distribution, while rarely
applying reset leads to the mode collapse issue. As a default
setting, we use M = 2000, implying that we reactivate the
flow function four times over the whole training procedure.

To analyze the effect of M , we fine-tune the GFlowNet
policy with different M values: {1000, 2000, 4000}. As
shown in the Figure 9b, we find that too frequent reactiva-
tion (M = 1000) does not capture high-reward regions and
suffers from a significant drop in performance. While there
is no big difference between M = 2000 and M = 4000, we



Figure 10. Comparison with DPOK and PAG. We report the aesthetic score of images in bold.

empirically find that set M = 2000 achieves the best perfor-
mance in terms of both reward and diversity. This empirical
finding is also aligned with the other papers, which utilize a
reset strategy: Nikishin et al. [31] also reset the last layer of
the neural networks four times over the course of training.

D.3. Analysis on learning rate of flow function
Based on the observation that most actor-critic RL methods
use slightly higher learning rates for the critic than the ac-
tor [43], we use a higher learning rate (1 × 10−4) for the
flow function training than the learning rate of the policy
(1 × 10−5). Using a higher learning rate is also crucial for
quickly recovering from the flow reactivation.

To analyze the effect of learning rate (γ) for the flow
function, we fine-tune the GFlowNet policy with different
γ values: {1 × 10−3, 1 × 10−4, 1 × 10−5}. As shown in
the Figure 9c, we find that using the same learning rate for
the policy and the flow function leads to poor performance
as expected. While there is no big difference between γ =
1 × 10−3 and γ = 1 × 10−4, we empirically find that set
γ = 1 × 10−4 achieves the best performance in terms of
both reward and diversity.

D.4. Analysis on flow reactivation scheme
To prevent a significant drop in performance and unstable
training, we employ a targeted reset strategy that resets only
the last layer of the flow function. To analyze the effect of
our strategy, we conduct experiments with two additional
reset strategies: (1) reset the whole layer of the flow func-
tion and (2) reset the policy. For resetting the policy, we
randomly reset 0.01% of neurons in the policy parameters.

Figure 9d shows the performance of various reset strate-
gies. As depicted in the figure, resetting the whole layer
of the flow function does not recover policy towards high-
scoring regions. Resetting the policy parameters also ex-
hibits poor performance, as the policy directly affects the
acquisition of online samples.

D.5. Analysis on Diversity of Images
We also compute the diversity between the final images
sampled from text-to-image diffusion models conditioned
on prompts generated by different methods. To compute

diversity, we compute the average pairwise distance be-
tween feature vectors extracted by the pre-trained Incep-
tionV3 model [47]. As shown in Table 6, PAG exhibits high
diversity on images compared to baselines.

Table 6. Diversity evaluation on images.

Method COCO ChatGPT

Reward Diversity Reward Diversity

SFT 0.54 ± 0.07 0.20 ± 0.01 0.76 ± 0.03 0.19 ± 0.01
Promptist 0.65 ± 0.02 0.19 ± 0.01 0.76 ± 0.03 0.17 ± 0.01
GFlowNets 0.73 ± 0.02 0.18 ± 0.01 0.63 ± 0.03 0.16 ± 0.01

PAG (Ours) 0.88 ± 0.02 0.21 ± 0.01 0.88 ± 0.04 0.20 ± 0.01

E. Comparison with Directly Fine-tuning Dif-
fusion Models

In this section, we explain in detail the comparison with di-
rectly fine-tuning diffusion models to generate images with
desired properties.

E.1. Experiment Setup
We strictly follow the experiment setup of DDPO2 and
DPOK3 for fine-tuning diffusion models. We fine-tune dif-
fusion models with aesthetic quality as a reward function
and use prompts from a list of 45 common animals.

E.2. Comparison with DPOK
We also compare our method with DPOK [11], another rep-
resentative method for fine-tuning diffusion models with
black-box reward functions. As shown in Figure 10, gener-
ated images from DPOK converge to similar styles, whereas
PAG generates diverse and high-quality images.

F. Additional Visualizations
In this section, we present additional visualizations to show
the effectiveness of PAG for text-to-image generation as
shown in Figures 11-12 (besides Figure 5 in the main text).
We also summarize the results for robustness across differ-
ent reward functions and transferability to different text-to-
image diffusion models as shown in Figure 13-14.

2https://github.com/jannerm/ddpo
3https://github.com/google-research/google-research/tree/master/dpok



Figure 11. Additional images generated by optimized prompts using Stable Diffusion v1.4. We use the same seed to visualize the effect
solely on prompt adaptation.

Figure 12. Additional images generated by optimized prompts using Stable Diffusion v1.4. We use the same seed to visualize the effect
solely on prompt adaptation.



Figure 13. Images generated with prompts fine-tuned with different reward functions. We use the same seed to visualize the effect solely
on prompt adaptation.

Figure 14. Images generated with different text-to-image diffusion models. We use the same seed to visualize the effect solely on prompt
adaptation.
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