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Supplementary Material

For a comprehensive understanding of our proposed SoMA
framework, we have provided this supplementary material.
The following table of contents gives a concise overview
and directs readers to specific sections of interest.
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A. Implementation Details
We utilize the MMSegmentation [10] and MMDetection [6]
codebase for Domain Generalized Semantic Segmenta-
tion (DGSS) and Domain Generalized Object Detection
(DGOD) implementations, respectively, and leverage the
training scripts developed by HuggingFace [45] for subject
personalization experiments.

A.1. DGSS Settings
The experimental settings for all studies conducted in the
main paper are outlined in Tab. 1. Unless otherwise spec-
ified, Mask2Former [8] is utilized as the default decode
head, and following Rein [46], we adopt only the basic data
augmentation used in Mask2Former. Additionally, EMA is
selectively employed to ensure stable training. To avoid po-
tential overfitting due to the large model (dimension) size
when employing DINOv2-giant as the backbone, we opt to
lower the SoMA rank from 16 to 8.

A.2. DGOD Settings
The DGOD settings are detailed in the rightmost two
columns of Tab. 1. When applying SoMA to convolution-
based backbones such as ResNet [17], we linearize both
the patch-level convolution and its weights. Specifically,

a single convolution operation can be represented as a lin-
ear layer, y = Wx, where x ∈ R(n×h×w)×1, y ∈ Rm, and
W ∈ Rm×(n×h×w). We then apply SoMA as described
in Eq. 1 of the main paper. For ResNet backbones, which
possess a much narrower pre-trained knowledge compared
to VFMs, we use extensive image corruption techniques to
simulate domain shifts, following DivAlign [11]. In con-
trast, when using DINOv2 [35] as the backbone, we simply
utilize basic data augmentation used in Co-DETR [54].

A.3. Subject Personalization Settings
We conduct experiments on the DreamBooth dataset [41],
which consists of 30 subjects with 4–6 images per sub-
ject. In all experiments the SoMA weights are trained using
Adam optimizer for 500 iterations with a learning rate of
5e − 5. We set the adapter rank to r = 32 and only use a
center crop for data augmentation. Inspired by recent find-
ings [16] that the first 10 attention layers of up blocks.0
in SDXL [40] are pivotal for preserving image content, we
fine-tune only these layers. Furthermore, to fully leverage
pre-trained image-text joint representations, we freeze the
cross-attention modules and apply SoMA solely to the self-
attention modules.

B. Detailed Ablations
B.1. Component Analysis
In this subsection, we conduct detailed ablation studies
under multiple settings: GTAV → Mapillary DGSS and
Daytime-Sunny → {Dusk-Rainy, Daytime-Foggy} DGOD
scenarios. In Tables 2 and 3, we systematically evaluate the
effectiveness of each component within the SoMA frame-
work based on class-wise IoU/AP (%). All proposed com-
ponents enhance overall generalization performance with-
out adding any additional training or inference costs.

As illustrated in Tab. 2, freezing early blocks not only
substantially reduces the number of trainable parameters
but also significantly improves performance for classes that
are infrequently observed in the source dataset (e.g., bicy-
cle, motorcycle, train). Additionally, tuning minor singu-
lar components maximizes the retention of VFM’s world
knowledge during task adaptation, leading to superior gen-
eralization performance over tuning principal components
(PiSSA [33]) for most classes. For an in-depth compar-
ison of our methods with PiSSA, please refer to Sec. E.
Lastly, annealing weight decay proves especially beneficial
for classes requiring fine-detail discrimination (e.g., road
vs. sidewalk, traffic light vs. traffic sign, car vs. truck vs. bus



Hyperparameters DGSS DGOD

Setting G→{C, B, M} G+S→{C, B, M} G+S+U→{C, B, M} C→{B, M}/ACDC 1
16

C→{C, B, M} DS→{NC, DR, NR, DF}

Backbone DINOv2-L/EVA02-L DINOv2-L DINOv2-L DINOv2-G DINOv2-L DINOv2-L DINOv2-L RN101

rank r 16 16 16 8 16 16 16 24
NFEB 8 8 8 12 8 8 8 21
optimizer AdamW
lr scheduler Linear Linear Linear Linear Linear Linear MultiStep MultiStep
AWD scheduler Cosine
learning rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-5 2e-4 2e-4
backbone lr mult. 0.5
weight decay 5e-2/3e-2 5e-2 5e-2 5e-2 5e-2 5e-2 5e-2 1e-3
batch size 4 4 4 4 8 8 8 4
warmup iters 0 0 0 0 1.5k/10k 0 1.5k 1.5k
iters 40k 40k 40k 40k 40k 4k 40k 40k
EMA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1. DGSS/DGOD hyperparameter configurations. “NFEB” denotes the number of frozen early blocks.

Methods Params. road side. build. wall fence pole light sign vege. terr. sky pers. rider car truck bus train motor. bicy. mIoU

Full fine-tuning (baseline) 304.2M 92.1 64.5 87.8 49.0 56.4 58.8 66.1 57.3 82.9 53.9 95.0 79.3 63.2 91.8 65.3 75.9 50.9 64.7 54.1 68.9
⌞ + Freezing early blocks 201.6M 91.6 65.0 87.6 46.9 55.0 57.0 66.6 52.9 81.5 52.5 94.5 77.9 56.4 91.6 64.5 75.8 60.1 68.8 57.3 68.6
⌞ + Tuning principal components 4.9M 93.1 69.4 88.3 48.4 53.9 59.0 67.4 57.5 81.9 53.1 94.8 79.9 61.4 90.0 65.6 80.8 44.7 70.7 55.3 69.2
⌞ + Tuning minor components 4.9M 93.4 70.6 88.2 52.4 55.0 59.1 68.3 60.4 81.8 52.3 94.9 79.9 61.0 91.2 69.7 84.5 60.2 70.9 59.3 71.2
⌞ + Annealing weight decay 4.9M 93.6 71.4 88.3 52.3 54.9 59.1 69.4 62.7 81.9 52.8 94.9 79.4 57.7 91.8 72.9 85.3 61.9 71.6 60.1 71.7

Table 2. Effect of the proposed components under GTAV → Mapillary DGSS setting. We highlight the best and second-best for
each column.

Daytime-Sunny→Dusk-Rainy Daytime-Sunny→Daytime-Foggy

Methods Params. bus bike car motor person rider truck mAP bus bike car motor person rider truck mAP

Full fine-tuning (baseline) 307.3M 61.2 44.9 80.7 45.2 56.0 41.0 67.2 56.6 46.4 37.3 65.1 42.9 49.2 48.9 40.9 47.2
⌞ + Freezing early blocks 201.6M 63.0 46.5 81.2 46.0 58.2 39.5 68.0 57.5 47.5 39.5 67.2 45.6 50.3 50.0 40.6 48.7
⌞ + Tuning principal components 4.9M 64.3 49.2 80.5 46.3 57.9 41.6 68.2 58.3 48.5 40.1 67.5 47.5 50.3 51.0 45.3 50.0
⌞ + Tuning minor components 4.9M 65.6 50.6 80.8 46.9 58.4 42.7 69.4 59.2 50.6 39.7 67.7 48.3 50.9 51.6 46.1 50.7
⌞ + Annealing weight decay 4.9M 65.7 50.5 81.1 48.1 59.0 41.0 69.5 59.3 50.3 40.9 67.9 48.6 51.5 52.3 45.7 51.0

Table 3. Effect of the proposed components under Daytime-Sunny → Dusk-Rainy and Daytime-Sunny → Daytime-Foggy
DGOD settings. We highlight the best and second-best for each column.

vs. train, motorcycle vs. bicycle). Likewise, all components
clearly improve recognition for the majority of classes un-
der adverse weather detection settings (see Tab. 3).

B.2. Freezing Scheme

While freezing the initial blocks of VFM is effective in
preserving its generalization ability during task adaptation,
freezing too many blocks can lead to a reduction in dis-
criminability. To better understand this trade-off, we ex-
plore the effects of varying the number of frozen blocks.
Tab. 4 shows that freezing up to the first 8 blocks progres-
sively enhances performance, but freezing beyond this point
results in a decline. Considering that feature maps from
multiple blocks (e.g., the 8th, 12th, 16th, and 24th blocks
in large-sized backbones) serve as inputs to the segmenta-

# frozen early blocks 0 4 8 12 16

Citys. perf. (mIoU in %) 70.62 71.51 71.82 70.71 70.47
Params.∗ 7.3M 6.1M 4.9M 3.7M 2.4M

Table 4. Performance comparison with varying numbers of
frozen early blocks under GTAV → Cityscapes DGSS setting.

tion/detection head, using more than one frozen VFM fea-
tures as head input significantly undermines task adaptabil-
ity (i.e. discriminability). Furthermore, since the first in-
put feature map of the decode head is directly incorporated
into the final mask prediction in Mask2Former [8], freezing
the blocks that generate this feature map allows the full uti-
lization of the generalization capacity of the early blocks in
VFMs (see Fig. 3 in the main paper).



Backbone Ablation Test Domains (mIoU in %)

Backbones Methods Params.∗ →Citys. →BDD →Map. Avg.

Single-source DGSS Trained on GTAV

DINOv2-L [35]
FFT 304.2M 66.93 57.34 68.89 64.39
SoMA 4.9M 71.82 61.31 71.67 68.27

DINOv2-B [35]
FFT 86.5M 60.84 52.98 62.12 58.65
SoMA 2.3M 66.71 57.48 67.34 63.84

DINOv2-S [35]
FFT 22.0M 53.71 49.03 58.10 53.61
SoMA 1.0M 57.58 52.95 62.48 57.67

ConvNeXt V2-L [47]
FFT 196.4M 55.93 50.71 60.79 55.81
SoMA 12.1M 60.12 53.36 61.46 58.31

Swin-L [32]
FFT 195.2M 54.40 49.85 60.05 54.77
SoMA 5.4M 56.91 51.98 60.73 56.54

ResNet101 [17]
FFT 42.3M 41.29 44.29 48.79 44.79
SoMA 2.5M 41.23 45.57 49.71 45.50

Table 5. Results across various backbones and model sizes.

SemFPN Results Test Domains (mIoU in %)

Backbones Methods Params.∗ →Citys. →BDD →Map. Avg.

Single-source DGSS Trained on GTAV

DINOv2-L [35]
Rein [46] 2.5M 63.60 59.00 63.70 62.10
SoMA 4.9M 67.81 60.12 68.95 65.63

EVA02-L [15]
Rein [46] 2.5M 61.40 58.50 62.00 60.70
SoMA 5.1M 64.91 57.54 65.33 62.59

Table 6. DGSS evaluation results with SemFPN head [28].

C. Additional Experiments
C.1. Results on Various Backbones
Tab. 5 showcases the versatility of SoMA across a wide
range of backbones, ranging from isotropic Vision Trans-
formers (ViTs) to ConvNets and hierarchical ViT, as well
as models trained under various approaches, such as Im-
ageNet [12] supervision and MAE [18, 47] pre-training.
SoMA consistently outperforms FFT across diverse back-
bone architectures. Notably, the improvements brought by
SoMA become increasingly pronounced with larger model
sizes and more extensive, high-quality data during pre-
training, highlighting the superior ability of our method to
preserve pre-trained knowledge.

C.2. Results on SemFPN Head
While Mask2Former [8] is predominantly employed as de-
code head in all DGSS experiments, SoMA is compatible
with any decode head. To assess its robustness across dif-
ferent heads, we employ the lightweight SemFPN [28] head
to benchmark its performance against Rein [46]. Our ex-
perimental results (Tab. 6) indicate that SoMA integrates
seamlessly with diverse backbones and heads, consistently
surpassing the SOTA baseline.

Efficiency Training (bs = 4) Inference (bs = 1 / 32)

Methods Time (hrs) Memory Throughput (imgs/s) Memory

SET large 9.2 12.5G 20.0 / - 5.5G / OOM
Rein large 9.3 12.2G 33.6 / 64.3 4.7G / 48.2G
SoMA large 9.0 12.7G 56.4 / 79.7 4.4G / 40.9G
FFT giant 27.9 45.3G 21.6 / - 10.6G / OOM
SoMA giant 18.9 25.6G 21.6 / - 10.6G / OOM

Table 7. DGSS model efficiency. Inference statistics are measured
only for the backbone on image crops of 512×512, and are mea-
sured with warmup and averaged over multiple runs. We use an
NVIDIA RTX A6000. “bs” denotes batch size.

Synthetic-to-Real Generalization Test Domains (mIoU in %)

Methods Backbone Params.∗ →Citys. →BDD →Map. Avg.

Single-source DGSS Trained on GTAV

PEGO [20] DINOv2-L 2.6M 68.86 61.44 68.61 66.30
PiSSAr16 [33] DINOv2-L 7.3M 69.43 60.62 69.44 66.50
SoMA (Ours) DINOv2-L 4.9M 71.82 61.31 71.67 68.27

Table 8. Performance Comparison of our SoMA against PEGO
and PiSSA under the basic DGSS setting. The reported perfor-
mance of PEGO indicates the best result achieved within the hy-
perparameter space proposed in the original paper.

D. Model Efficiency Comparison
As detailed in Tab. 7, SoMA exhibits higher throughput
than adapter- and VPT-based methods like Rein [46] and
SET [50], as it incurs no additional latency. This advantage
is especially significant in online inference settings, where
the batch size is typically as small as one [19]. Furthermore,
in scenarios involving DINOv2-giant exceeding 1B param-
eters, SoMA can drastically reduce training costs compared
to FFT. SoMA initialization is completed within 30 seconds
for large-sized models, which is a negligible cost given the
improved performance.

E. Additional Comparison
In Tables 9, 10, and 11, we present an exhaustive compari-
son with existing methods to illustrate the broader research
landscape across multiple DGSS settings.
Comparing SoMA with PiSSA [33] and PEGO [20].
PiSSA optimizes parameter efficiency by selectively ad-
justing the principal singular direction, which is the most
stretched direction of the weight matrix. Also PEGO en-
hances domain generalization by enforcing strict orthog-
onality between the LoRA adapter and every direction of
the pre-trained weights. In stark contrast to PiSSA, SoMA
tunes minor singular components, effectively preserving
the integrity of pre-trained knowledge. Importantly, our
method accounts not only for component orthogonality but
also for how pre-trained knowledge is structured within
the weight matrix. Thus, although both methods main-
tain similar orthogonality between tuned and frozen com-



ponents, SoMA, unlike PiSSA—which directly tunes prin-
cipal components—robustly adjusts the hierarchical world
knowledge structure (see Fig. 2 in the main paper), achiev-
ing superior DGSS performance, as shown in Tab. 8. These
findings are consistent with the observations presented in
the Ablation Sec. B.1.

Furthermore, unlike PEGO, our SoMA leverages spec-
tral information to initialize the LoRA adapter, allowing
it to naturally preserve the pre-trained knowledge struc-
ture without relying on explicit regularization loss. As ev-
idenced by its superior performance relative to PEGO in
Tab. 8, we argue that imposing strict orthogonality con-
straints on all directions of the pre-trained weights may ex-
cessively restrict task adaptation, potentially compromising
discriminability. Lastly, whereas PEGO and PiSSA explore
adaptation solely at the weight level, our SoMA framework
extends its analysis to both the block level and training dy-
namics.
DGSS and DGOD Qualitative Comparison. Figures 1,
2, and 3 depict DGSS prediction results on unseen do-
mains for Cityscapes, BDD100k, and Mapillary, respec-
tively, while Fig. 4 provides detection results under various
adverse conditions. As evident from the visual comparisons
above, SoMA demonstrates remarkable robustness to do-
main shifts resulting from diverse attributes (e.g., translu-
cency, lighting conditions, road features, geographic vari-
ations, weather differences), while also excelling in fine-
detail recognition compared to the selected baselines.
Subject Personalization. Domain generalized recogni-
tion requires consistent processing of inputs from diverse
domains, whereas domain generalized generation involves
generating outputs across a range of domains. Although
large-scale Text-to-Image (T2I) models have convincingly
demonstrated this ability, it can be compromised in subject
personalization tasks involving fine-tuning. As shown in
Figures 5 and 6, integrating the SoMA framework in this
case enables T2I models to fully leverage their generaliza-
tion capability to synthesize target subjects in new domains.

In summary, our proposed methods effectively facil-
itate domain-generalizable representation learning by
maximally preserving pre-trained knowledge across di-
verse domains while learning task-specific features.

F. Discussion and Limitations
Our adaptation approach introduces SVD as an interpretable
tool applied to raw weight matrices, offering a fresh per-
spective on domain generalization. Within this perspective,
we focus on tuning the minor singular components to pre-
serve the integrity of generalizable components with mini-
mal interference. However, achieving further performance
improvements will require a more structured and nuanced
design space. Questions such as whether focusing solely
on the lowest spectral space is optimal, or how to iden-

tify and adjust specific singular components for particular
tasks, remain as avenues for future exploration. Addition-
ally, we plan to investigate design choices such as setting
different ranks for each block or examining whether the
low-rank matrices A and B play distinct roles, analyzing
how these decisions influence generalization performance.
Extending these comprehensive analyses to other domains
where foundation models are primarily employed, such as
LLM benchmarks and audio applications, would also be an
exciting direction for future work.



Synthetic-to-Real Generalization Test Domains (mIoU in %)

Methods Backbone Head →Citys. →BDD →Map. Avg.

Single-source DGSS Trained on GTAV
◦ IBN-Net [37] RN50 DL-V3+ 33.85 32.30 37.75 34.63
◦RobustNet [9] RN50 DL-V3+ 36.58 35.20 40.33 37.37
◦DRPC [51] RN101 FCN 42.53 38.72 38.05 39.77
◦SiamDoGe [48] RN50 DL-V3+ 42.96 37.54 40.64 40.38
◦DIRL [49] RN50 DL-V3+ 41.04 39.15 41.60 40.60
◦GTR [38] RN101 - 43.70 39.60 39.10 40.80
◦AdvStyle [53] RN101 DL-V3+ 43.44 40.32 41.96 41.91
◦PintheMem [26] RN101 DL-V2 44.90 39.71 41.31 41.97
◦MRFP+ [44] RN50 DL-V3+ 42.40 39.55 44.93 42.29
◦SAN-SAW [39] RN101 DL-V3+ 45.33 41.18 40.77 42.43
◦SPC [21] RN50 DL-V3+ 44.10 40.46 45.51 43.36
◦BlindNet [1] RN50 DL-V3+ 45.72 41.32 47.08 44.71
◦WildNet [29] RN101 DL-V3+ 45.79 41.73 47.08 44.87
◦SHADE [52] RN101 DL-V3+ 46.66 43.66 45.50 45.27
◦PASTA [5] RN101 DL-V3+ 45.33 42.32 48.60 45.42
◦SoMA (Ours) RN101 M2F 41.23 45.57 49.71 45.50
◦MoDify [25] RN101 DL-V2 48.80 44.20 47.50 46.80
◦TLDR [27] RN101 DL-V3+ 47.58 44.88 48.80 47.09
◦FAMix [14] CLIP RN101 DL-V3+ 49.47 46.40 51.97 49.28
◦CMFormer [4] Swin-L - 55.31 49.91 60.09 55.10
◦SoMA (Ours) Swin-L M2F 56.91 51.98 60.73 56.54
◦DGInStyle [24] MiT-B5 HRDA 58.63 52.25 62.47 57.78
◦DIDEX [34] MiT-B5 DAFormer 62.00 54.30 63.00 59.70
◦CLOUDS [2] CLIP CN-L M2F 60.20 57.40 67.00 61.50
◦VLTSeg [22] EVA02-L M2F 65.30 58.30 66.00 63.20
◦Rein [46] EVA02-L M2F 65.30 60.50 64.90 63.60
◦FADA [3] EVA02-L M2F 66.70 61.90 66.10 64.90
◦ tqdm [36] EVA02-L M2F 68.88 59.18 70.10 66.05
◦SoMA (Ours) EVA02-L M2F 68.05 60.81 68.33 65.73
•SoMA (Ours) EVA02-L M2F 69.94 62.48 68.33 66.92
◦DoRA [31] DINOv2-L M2F 66.12 59.31 67.07 64.17
◦VPT [23] DINOv2-L M2F 68.75 58.64 68.32 65.24
◦SET [50] DINOv2-L M2F 68.06 61.64 67.68 65.79
◦FADA [3] DINOv2-L M2F 68.23 61.94 68.09 66.09
◦AdaptFormer [7] DINOv2-L M2F 70.10 59.81 68.77 66.23
◦SSF [30] DINOv2-L M2F 68.97 61.30 68.77 66.35
◦LoRA [19] DINOv2-L M2F 70.13 60.13 70.42 66.89
◦Rein† [46] DINOv2-L M2F 69.19 60.01 69.06 66.09
•Rein† [46] DINOv2-L M2F 70.68 62.51 69.61 67.60
◦SoMA (Ours) DINOv2-L M2F 71.82 61.31 71.67 68.27
•SoMA (Ours) DINOv2-L M2F 73.63 63.33 70.98 69.31

Multi-source DGSS Trained on GTAV + SYNTHIA
◦RobustNet [9] RN50 DL-V3+ 37.69 34.09 38.49 36.76
◦AdvStyle [53] RN50 DL-V3+ 39.29 39.26 41.14 39.90
◦DIGA [43] RN101 DL-V2 46.43 33.87 43.51 41.27
◦PintheMem [26] RN50 DL-V3+ 44.51 38.07 42.70 41.76
◦MRFP+ [44] RN50 DL-V3+ 46.18 41.13 45.28 44.24
◦SHADE [52] RN50 DL-V3+ 47.43 40.30 47.60 45.11
◦TLDR [27] RN50 DL-V3+ 48.83 42.58 47.80 46.40
◦SPC [21] RN101 DL-V3+ 47.93 43.62 48.79 46.78
◦FAMix [14] CLIP RN50 DL-V3+ 49.41 45.51 51.61 48.84
◦Rein† [46] DINOv2-L M2F 72.17 61.53 70.69 68.13
◦SoMA (Ours) DINOv2-L M2F 73.16 61.90 72.73 69.26
•SoMA (Ours) DINOv2-L M2F 74.85 63.59 73.92 70.79

Table 9. Comparison of the proposed SoMA with existing DGSS
◦ and PEFT ◦methods under various synthetic-to-real settings.

Real-to-Real Generalization Test Domains (mIoU in %)

Methods Backbone Head →BDD →Map. Avg.

Single-source DGSS Trained on Cityscapes

◦RobustNet [9] RN50 DL-V3+ 50.73 58.64 54.69
◦WildNet [29] RN50 DL-V3+ 50.94 58.79 54.87
◦SiamDoGe [48] RN50 DL-V3+ 51.53 59.00 55.27
◦SHADE [52] RN50 DL-V3+ 50.95 60.67 55.81
◦BlindNet [1] RN50 DL-V3+ 51.84 60.18 56.01
◦FAMix [14] CLIP RN50 DL-V3+ 54.07 58.72 56.40
◦SAN-SAW [39] RN101 DL-V3+ 54.73 61.27 58.00
◦HGFormer [13] Swin-L - 61.50 72.10 66.80
◦CMFormer [4] Swin-L - 62.60 73.60 68.10
◦ tqdm [36] EVA02-L M2F 64.72 76.15 70.44
◦FADA [3] DINOv2-L M2F 65.12 75.86 70.49
◦Rein† [46] DINOv2-L M2F 66.53 75.18 70.86
◦SoMA (Ours) DINOv2-L M2F 67.02 76.45 71.74
•SoMA (Ours) DINOv2-L M2F 68.08 77.87 72.98

Table 10. Real-to-real DGSS comparison.

Clear-to-Adverse Weather ACDC [42] Test Domains (mIoU in %)

Methods →Night →Snow →Fog →Rain Avg.

Single-source DGSS Trained on Cityscapes

◦CMFormer [4] 33.7 64.3 77.8 67.6 60.9
◦SET [50] 57.3 73.7 80.1 74.8 71.5
◦FADA [3] 57.4 73.5 80.2 75.0 71.5
◦SoMA (Ours) 52.4 74.6 84.1 75.5 71.7

Table 11. Results on Cityscapes → ACDC validation set.
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Figure 1. Segmentation results of SoMA on the Cityscapes. The model is trained on GTAV with DINOv2-L backbone.
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Figure 6. Qualitative comparison to DreamBooth [41] with prior preservation (p.p.) loss.
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