
A. Implementation Details
A.1. Algorithm
Our optimization and densification algorithm is shown
in Algorithm 1. All modifications compared to the original
Gaussian Splatting process [26] are highlighted in green.

Algorithm 1 Optimization and Densification
w, h: width and height of the training images

M ← Event-to-VideoGuidedPoints() \triangleright Positions
S,C,A← InitAttributes() \triangleright Covariances, Colors,
Opacities
i← 0 \triangleright Iteration Count
while not converged do

kstart, kend, D ← GenerateTrainingView()
I1 ← Rasterize(M , S, C, A, kstart)
I2 ← Rasterize(M , S, C, A, kend)
L̂1 ← Log(Remosaicing(I1))
L̂2 ← Log(Remosaicing(I2))
L ← Loss(L̂2 − L̂1, D) \triangleright Loss
M , S, C, A← Adam(∇L) \triangleright Backprop & Step
if IsRefinementIteration(i) then

for all Gaussians (µ,Σ, c, α) in (M,S,C,A) do
if α < ϵ or IsTooLarge(µ,Σ) then \triangleright Pruning

RemoveGaussian()
end if
if∇pL > τp then \triangleright Densification

if ∥S∥ > τS then \triangleright Over-reconstruction
SplitGaussian(µ,Σ, c, α)

else \triangleright Under-reconstruction
CloneGaussian(µ,Σ, c, α)

end if
end if

end for
end if
i← i+ 1

end while

A.2. Hyper-parameters and Optimizations
Our approach adopts original 3D Gaussian Splatting as the
backbone as it allows for high quality view synthesis with
high-speed rendering. The Gaussian Model is initialized
with spherical harmonics degree and several parameters,
including xyz coordinates, features, scaling, rotation, and
opacity. The model sets up essential functions for covari-
ance, opacity, and rotation activations. The model includes
functions to densify and prune Gaussians based on gradi-
ent thresholds and opacity. This ensures efficient use of
computational resources by adding new Gaussians where
needed and removing those that are not contributing ef-
fectively. Training utilizes the similar optimization strate-
gies and hyper-parameter settings originally proposed for

3D Gaussian Splatting including position, feature, opacity,
scaling, and rotation. The learning rate is scheduled to ad-
just dynamically during training. The only opacity learn-
ing rate was changed from 0.05 to 0.01 to make the train-
ing more stable. The instability seems to result from the
3D Gaussian Splatting model being supervised from multi-
view points with different accumulation lengths.

A.2.1. Contrast threshold
Both Robust-e-NeRF and our method were co-optimized
and trained with the symmetric contrast thresholds initial-
ized at C+1/C−1 = 1.0 (more precisely set at C−1 = 0.25)
in synthetic datasets and the EDS dataset, and asymmet-
ric contrast threshold initialized at C+1/C−1 = 1.458 (set
at C−1 = 0.25)[42] in the TUM-VIE dataset.

A.3. Experiment Setup

Our research and development efforts are deeply rooted
in the principles of 3D Gaussian Splatting [26] methodol-
ogy. In pursuit of advancing these technologies, we trained
our models for more than 30k iterations (set at 40k itera-
tions). This training was conducted on a NVIDIA GeForce
RTX4090 GPU. Training time of synthetic scenes take 1-2
hours and that of real scenes take 1-3 hours at 40k iterations.

B. Additional Experimental Results

B.1. Qualitative Results in Synthetic Scenes

Fig. 6 shows the quantitative results of all methods for all
seven synthetic scenes. The qualitative results are similar to
the quantitative evaluation numbers as shown in Tab. 1. In
the drums, lego, materials, and mic scenes, fine details seem
to be well reconstructed. The chair and ficus reconstruction
results appear to be similar details. In the hotdog case, it
seems that the images produced by our method are not as
well reconstructed compared to Robust-e-NeRF.

B.2. Qualitative Results on Different Synthetic
Datasets

We evaluated our method on the same scenes used in
EV-GS [70] from EventNeRF dataset [59] to compare
grayscale results. We computed the mean values across 4
scenes(chair, ficus, hotdog and mic). As shown in Tab. 4,
our approach outperforms EV-GS in terms of PSNR and
SSIM. Furthermore, Fig. 7 shows qualitative results for 4
synthetic scenes in grayscale, demonstrating that the gener-
ated images are reconstructed effectively.

B.3. Qualitative Results in Real-World Scenes

Fig. 8 and Fig. 9 present additional quantitative results for
the scenes 03_rocket_earth_dark, 07_ziggy_and_fuzz_hdr,
08_peanuts_running, 11_all_characters and 13_airplane, as
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Ours Ground truthRobust-e-NeRFE2VID+3DGS

Figure 6. Generated images are shown, qualitatively comparing our work, event-based NeRF, and E2VID+3DGS in all synthetic scenes.



Table 4. Quantitative evaluation of mean values across the 4 syn-
thetic scenes from [70].

Metric PSNR ↑ SSIM ↑
Ours EV-GS Ours EV-GS

Mean 29.48 26.6 0.959 0.925
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Figure 7. Generated images qualitatively comparing our method
with ground truth across 4 synthetic scenes.

well as for the mocap-1d-trans, mocap-desk2 scenes, re-
spectively. Our method demonstrates the ability to recon-
struct fine detail in both real-world data. However, there is
still room for improvement in the quality of reconstruction
for some real-world scenes, particulary concerning floating
point clouds and the back wall.



Ground truthOursRobust-e-NeRFE2VID+3DGS

Figure 8. For each scene in the EDS dataset, we show generated images from two viewpoints alongside the ground truth image, comparing
our work with event-based NeRF and E2VID+3DGS.
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Figure 9. For each scene in TUM-VIE dataset, we show generated images from two viewpoints alongside the ground truth image, compar-
ing our work with event-based NeRF and E2VID+3DGS.


