Complexity Experts are Task-Discriminative Learners for Any Image Restoration

Supplementary Material

In the supplementary material, we first provide more
implementation details of our work in Sec. A. Next, we
provide further ablations and analyses in Sec. B. Lastly, we
conclude by presenting additional visual comparisons across
the all-in-one settings, including five types of degradations
and composited degradations, as detailed in Sec. C.

A. Further Implementation Details

Throughout all our experiments, we maintained a fixed ran-
dom seed for reproducibility purposes. We based our imple-
mentation on the public PyTorch-based PromptIR [41] and
AirNet [28] code for architecture development and training.
We use fvcore | Python package for computing GFLOPS
and parameter counts.

The MoE routing implementation is based on the publicly
available re-implementation of sparse MoE [51] in PyTorch ?,
as well as the official VMOoE [48] JAX code ° , which we
have transcribed into PyTorch.

Training Time. Training proposed MoCE-IR in the all-
in-one setting, which includes dehazing, deraining, and de-
noising, requires approximately two days using 4 NVIDIA
RTX 4090 GPUs. For the more comprehensive all-in-one
task involving five degradations, the training time extends to
roughly four days. Optimizing the dispatching and merging
of sub-batches for each expert during training could reduce
the overall training time, which currently represents the pri-
mary computational bottleneck in our approach.

Datasets. For further zero-shot evaluations in Sec. B.2, we
use the following datasets: defocus deblurring (DPDD) [1],
motion deblurring (HIDE [52] and GoPro [39]), snow re-
moval (RealSnow [81]), underwater restoration (UIEB [29]),
and shadow removal (SRD [11]).

B. Additional Ablations
B.1. Model Design

High-Frequency Context. In addition to the current input
feature, each routing function receives an additional input: a
global context vector. This context vector is derived from the
bottleneck output of the UNet by applying a frozen convo-
lution initialized by a Sobel filter to extract high-frequency
information.

lqit;mb .com/facebookresearch/fvcore
zgit hub.com/davidmrau/mixture-of-experts
3qit hub.com/google-research/vmoe

Table 6. More ablations on the architecture design. We provide
further insights in the design decisions of our MoCE-IR framework
and the optimization function. We present the average PSNR (dB, 1)
and SSIM (1) across the AIO-3 setting including SOTS, Rain100L
and BSD68 benchmarks.

Method L1 F-L1 HF-Context Experts PSNR SSIM

Baseline v - FFTFormer [25] 31.85 910
v v - FFTFormer [25] 32.50 915
v v v ConvFormer [20] 32.51 916
MoCE-IR-S v v v FFTFormer [25] 32.57 .916

The goal is to prime the routing function to focus on
high-frequency components, which are crucial for restor-
ing fine image details. As shown in Tab. 6, incorporating
the high-frequency (HF) context vector results in an over-
all improvement of 0.07 dB. When the full high-frequency
awareness is introduced through both the optimization func-
tion and the HF context vector, a total improvement of 0.72
dB is observed.

Expert Block Architecture. Our complexity expert frame-
work offers versatility, supporting diverse expert architec-
tures and establishing a foundation for future research. As
shown in Tab. 6, our proposed expert design outperforms
convolutional-based experts [20], where increased receptive
fields are achieved through larger kernel sizes.

Moreover, the complexity expert concept demonstrates
potential for generalization across multiple domains, such as
segmentation and classification tasks, suggesting its applica-
bility in broader MoE architectures.

Optimization Function. In comparison to using only the
traditional L1 loss in RGB space presented in Tab. 6, incorpo-
rating the combined losses results in an average performance
improvement of 0.72 dB across dehazing, deraining, and
denoising tasks. While only a few prior methods explicitly
employ the FFT loss [53, 54, 73], other all-in-one approaches
often rely on more complex training schedules with multiple
stages [28, 76] or leverage large-scale language models for
multimodal training [10, 14, 19, 35].

Primarly, incorporating language guidance into these
methods typically results in more significant improvements
than adding the FFT loss. For example, as shown in Tab. 7a,
InstructIR-3D [10] achieves a gain of 1.71 dB over its non-
language-based baseline, while OneRestore [19] demon-
strates a 0.25 dB improvement in the composited degradation
setting, see Tab. 7b. However, while the language guidance
demands additional computational resources, it is impor-
tant to note that the FFT loss delivers these benefits without


https://github.com/facebookresearch/fvcore
https://github.com/davidmrau/mixture-of-experts
https://github.com/google-research/vmoe

(a) MoCE-IR on SOTS

(e) MoCE-IR on LOLv1

(b) MoCE-IR on Rain100L

(c) MoCE-IR on BSD68,—25

(d) MoCE-IR on GoPro
4 =

5y 4 4 4

24 =

g 3 3 3 31 31

5]

=3

o2 2 |- 2 2 2

g m

G 1LY 11 O =N ST SRR =1 R O = AR 1| L1 1l L1
12345678910 12345678910 12345678910 12345678910 12345678910

Decoder Layers Decoder Layers

Decoder Layers

Decoder Layers Decoder Layers

Figure 6. Routing visualization for the AIO-5 setting. Complexity-aware routing facilitates task-specific learning by assigning experts to
input samples based on the task requirements. Our MoCE framework effectively extends this approach to even more diverse scenarios
than the traditional all-in-one with three degradations. To illustrate, we visualize the average routing decisions for tasks such as dehazing,
deraining, denoising, motion deblurring, and low-light enhancement, with the y-axis representing increasing expert complexity.

Table 7. Comparison to language-guided methods. We evaluate
our framework against InstructIR [10] and OneRestore [19] in the
AIO-5 and Composited degradation settings, focusing on scenarios
where these methods rely solely on visual inputs without additional
language priors. Our results demonstrate that MoCE-IR performs
favorably against these methods. ‘LM’ indicates the inclusion of

language guidance. We report PSNR (dB, 1) and SSIM (7)) metrics.

For the composited degradation setting, we present the average

Table 9. Zero-shot generalization. We present results for Air-
Net [28], PromptIR [41] and MoCE-IR compared for zero-shot
generalization to degradations unseen during training. We re-
port PSNR (db, 1), SSIM (1) and LPIPS (}) on the RGB im-
ages. We evaluate MoCE-IR on real-world data using IQA metrics:
MANIQA/CLIPIQA/MUSIQ.

(a) Blur degradations.

. > . DPDD GoPro HIDE
metrics across single-level, double-level, and triple-level degraded Method Params. 5o\ e SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
inputs, as well as the overall average. AirNet[28]  9M  20.17 .674 376 21.95 748 .330 20.68 .731 350
(a) AIO-5. PromptIR [41] 36M 21.76 .673 386 22.15 749 332 22.78 740 333
MoCE-IR 25M 21.83 .678 .372 22.50 .758 .326 22.92 .743 .334
Method LM SOTS Rainl0O0OL BSD68  GoPro LoLvl Avg. -
(b) Real-world degradations.
InstuetR -, 2520 93835.58.967 31.09.883 26,65 .810 20.70 .820 27.84 884
v 27.10 956 36.84 .973 31.40 873 29.40 .886 23.00 .836 29.55 .908 Method RealSnow (1) UIEB (1) SRD (1)
MoCE-IR - 30.48.974 38.04 .982 31.34 .887 30.05 .899 23.00 .852 30.58 .919 AirNet 2040 2832 38.08 3148 4645 51.65 3869 .5619 58.54
- - PromptIR 2133 3037 3835 3164 4734 51.82 3925 .5991 58.75
(b) Composited degradations. MoCE-IR (ours) ~ .2136 .3234 38.68 .3193 .4984 52.09 .3966 .6381 58.60
Method LM Single Double Triple Overall
OneRestore - 3168 938 27.35 866 24.84 789 2847 .878 Notably, increasing the number of experts leads to a sub-
i v 3181 939 27.65 .871 2523 .796 28.72 .882 L S . .
stantial rise in overall training time without corresponding
MoCE-IR-S - 3250 .940 27.67 870 2520 .788 29.11 .880

Table 8. Number of Complexity Experts. We investigate the model
performance of MoCE-IR-S when reducing or increasing the total
numbers n of expert blocks. We present the average PSNR (dB, 1)
and SSIM (1) across the AIO-3 setting including SOTS, Rain100L
and BSD68 benchmarks.

#E " SOTS Rain100L BSD68 Avg.

Xperts PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
2 3056 978 37.74 980 3115 871 3235 914
4 (ours) 3094 979 3822 983 3122 873 32.57 916
6 3047 977 3782 981 31.14 870 3234 913

compromising model efficiency.

Number of Complexity Experts. In Tab. 8, we analyze
the number of complexity experts within our MoCE layer.
The total number of parameters remains constant, adhering
to the nested parameter scaling rule, which distributes the
number of channels across the experts. Additionally, the
window partition sizes grow exponentially. Our observations
indicate that neither reducing nor increasing the number of
experts yields any significant benefit.

improvements. Moreover, the expert with the highest com-
plexity is rarely utilized across the considered degradations
when the n = 6. We attribute this to the increasing ho-
mogeneity among experts by design, as more experts share
similar parameter counts. Combined with the analysis in the
main text, we conclude that experts need to exhibit distinct
characteristics to ensure that the optimization process derives
measurable benefits from higher-complexity experts.

B.2. Zero-Shot Generalization

We evaluate the zero-shot generalization of MoCE-IR, Air-
Net [28], and PromptIR [41], all trained under the AIO-
3 setting, by testing their performance on unseen degra-
dations using PSNR, SSIM, and LPIPS metrics. Specifi-
cally, we assess various deblurring tasks, including defo-
cus deblurring on DPDD [1] and motion deblurring on Go-
Pro [39] and HIDE [52], with none of the models trained
on these degradations. For fair comparison, we use the of-
ficial model checkpoints for AirNet and PromptIR without
retraining. As shown in Tab. 9a, MoCE-IR outperforms
both methods, achieving higher PSNR and SSIM scores
and consistently lower LPIPS values across all datasets.
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(c) Triple composited degradations.

Figure 7. Routing visualization for the composited degradations setting. Using CDD11 [19], we observe a more distinct separation in expert
utilization compared to the AIO-3 and AIO-5 settings. Unlike these prior configurations, CDD11 provides uniformly high-quality images
with varying combinations of degradations, effectively mitigating imbalances caused by differences in image size, perceptual image quality,

the proportion of degraded samples, and content diversity.

Further, Tab. 9b presents real-world results, demonstrating
MOoCE-IR’s effectiveness on unseen degradations such as
snow, underwater scenes, and shadows. MoCE-IR maintains
strong performance on popular NR-IQA metrics, including
MANIQA [67], CLIPIQA [59], and MUSIQ [23].

B.3. Further Routing Analyses

We expand on the analysis presented in the main paper by
including visualizations for the AIO-5 setting (see Fig. 0)
and the composited setting (see Fig. 7). Furthermore, we in-
vestigate the effect of the F-L1 loss on the expert utilization.

Expert Utilization On Complex Degradations. Even
when faced with multiple simultaneous degradations or more
complex scenarios where a single image exhibits two or
three degradations, our MoCE framework demonstrates the
desired task-discriminative behavior. Building on the trends
discussed in the main text, where processing choices are
aligned with the inherent requirements of each degradation,
the visualizations for the composited degradation setting re-
veal additional insights. Specifically, certain degradations

tend to dominate the routing decisions, and a general pref-
erence for experts with smaller receptive fields becomes
apparent.

In all-in-one restoration, the goal is to effectively integrate
task-specific learning with task-invariant learning, creating
a model that fully leverages the unique aspects of each task
while incorporating cross-task knowledge into the restoration
process. As shown in Fig. 7, we observe a shift from task
individuality toward a preference for shared feature learning.
This transition is intuitive, given the nature of combined
degradations, which naturally encourage more collaborative
processing across tasks.

F-Loss Complements Task-Discrimination. Addition-
ally, we examine the impact of frequency awareness on ex-
pert utilization, as illustrated in Fig. 8. The left column
depicts the routing decisions of MoCE-IR without incorpo-
rating the Fourier loss, while the right column shows the
decisions with the Fourier loss applied.

In case of dehazing, visualized in Fig. 8 (a-b), there is a
notable difference in expert selection during decoding with
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Figure 8. Effect of F-L1. Placing greater emphasis on high fre-
quencies enhances task-discriminative behavior, as visualized by
comparing expert utilization in MoCE-IR models trained with and
without the FFT loss. Without the FFT loss, the routing decisions
in the later decoder layers become increasingly similar, resulting in
suboptimal capacity utilization and ultimately poorer reconstruc-
tion performance.

and without the FFT loss. Without the FFT loss, the choice
of experts in the final decoder layers shifts predominantly
toward those with larger receptive fields, while with the FFT
loss, the model exhibits a smoother and more stable routing,
favoring smaller receptive field experts in later layers.

This difference may arises because the FFT loss enforces
consistency in the frequency domain, compelling the net-
work to balance global structural information (low frequen-
cies) and local high-frequency details like edges and tex-
tures. Potentially, this difference arises because the FFT loss
enforces consistency in the frequency domain, seamingly
guiding the network to balance global structural information
(low frequencies) and local high-frequency details like edges
and textures. By doing so, the FFT loss reduces the reliance
on large receptive field experts for correcting global incon-
sistencies in the later stages of the decoder. This dynamic
routing demonstrates how the FFT loss guides the model
toward more task-aligned expert utilization, optimizing com-
putational complexity and promoting expert specialization
to enhance restoration performance and fidelity.

C. Visual Results

Visual Comparison on Three Degradations. Fig. 9, we
present additional visual examples under the three degra-
dation settings, comparing our approach with AirNet [28]

and PromptIR [41]. In challenging foggy scenarios, both
AirNet and PromptIR face difficulties in fully restoring scene
clarity, leaving residual fog and some color inconsistencies,
while our method achieves more accurate color reconstruc-
tion. Similarly, in rainy conditions, the competing methods
leave visible rain streaks, whereas our approach produces
cleaner outputs.

In noisy scenes, our method delivers sharper and more
detailed denoised results. Error heatmaps further illustrate
the pixel-level discrepancies, showing fewer errors in our
outputs compared to others. These results, in conjunction
with quantitative evaluations, highlight the effectiveness of
our approach.

Visual Comparison on Five Degradations. We present
visual comparisons of MoCE-IR trained on five degradation
types against InstructIR [10]. Similar to the results observed
in the three-degradation setting, our model consistently re-
stores image details from hazy, rainy, and noisy inputs. Be-
yond this, MoCE-IR demonstrates strong performance in
recovering clearer details from motion-blurred images and
achieves more accurate color and detail restoration in low-
illumination scenarios compared to InstructIR [10].

Visual Comparison on Composited Degradations. In
Fig. 11 and Fig. 12, we compare the visual quality of restored
test samples with the non-language-based version of OneRe-
store [19]. The comparison contains the same image sub-
jected to various degradation scenarios: two single degrada-
tions (low illumination and haze), three double-composited
degradations (low + haze, low + rain, haze + rain), and one
triple-composited degradation (low + haze + rain). To high-
light the reconstruction differences, we include zoomed-in
views of the restored outputs alongside corresponding error
maps, which effectively visualize discrepancies, particularly
those related to accurate color reconstruction.

In Fig. 11, we illustrate various restored regions across
the input image, highlighting how different degradations
impact specific areas and how our approach effectively re-
stores the original image quality. Meanwhile, in Fig. 12,
we examine the same image regions and their individual
degradation patterns, demonstrating the strong performance
of MoCE-IR compared to OneRestore. In particular, in the
composited degradation setting, visible remnants of haze,
rain, or color inaccuracies caused by low illumination are
evident in the baseline approach, whereas our framework
successfully addresses these issues.
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Figure 9. We provide a more detailed visual comparison of MoCE-IR-S with AirNet [28] and PromptIR [41] in the all-in-one setting
with three degradations. To illustrate the differences, we include error heatmaps where the color transition from black to white indicates
increasing pixel-wise error.
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Figure 10. We provide a visual comparison of MoCE-IR with InstructIR [10] in the all-in-one setting with five degradations. To illustrate the
differences, we include error heatmaps where the color transition from black to white indicates increasing pixel-wise error.
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Figure 11. Comparing MoCE-IR-S with OneRestore [19] on various composited degradations, including low illumination, haze, snow, rain,

as well as combinations of these in double and triple composited scenarios. We include the error heatmap with color transition from black to
white denotes increasing pixel-wise erroneous.
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Figure 12. Further visual results comparing MoCE-IR-S with OneRestore [19] on various composited degradations, including low
illumination, haze, snow, rain, as well as combinations of these in double and triple composited scenarios from CDD11 [19]. We include the
error heatmap with color transition from black to white denotes increasing pixel-wise erroneous.



