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In the supplementary material, we further provide im-
plementation details of the proposed modules, used datasets
and experimental setup, an analysis of why spectral trans-
form is effective in change detection, more visualization
of modules, ablation studies on another benchmark, com-
parison of generalization, comparisons on more datasets
or tasks, comparison and discussion of efficiency, a visual
comparison of the detection results of our method with other
methods, and a presentation of more generated data for ex-
isting transformation-based methods.

1. Implementation Details of Modules

We provide implementation details of the proposed EB-LS
and EB-AA to aid in understanding our algorithms.

1.1. Details of EB-LS
The proposed EB-LS (i.e., Eq. (7) in the original text) is
implemented by the following pseudo-code. It outputs the
symmetric binary vector maskh, where the values in the
intervals [0, H/2−HSh/2] and [H/2+HSh/2, H] are 0,
while in the interval [H/2 − HSh/2, H/2 + HSh/2] are
1, as shown in Fig. 2(c)-II and Fig. 3 in the original text.
The outer product between two symmetric binary vectors
maskh and maskw in Eq. (5) of the original text makes only
the center region (WSw ×HSh) of matrix Ḿ to be ones.

Algorithm 1 Details of EB-LS
1: m← torch.arange(0, H)
2: maskh ← torch.clamp(torch.ceil(H × Sh/2 − (H/2 −

m).abs()), 0, 1) # Sh is the strides with gradient.

1.2. Details of EB-AA
With the above-built binary Ḿ , we use the re-
parameterization trick to optimize the spectrum value as fol-
lows. When optimizing Mo with Eq. (3) in the original text,
M̀o will be optimized as a floating-point number. We sim-

ply binarize it (use the derivable torch.round() ) and make
the gradient have enough influence.

Algorithm 2 Details of EB-AA

1: M̀o ← torch.nn.Parameter(Ḿ .clone().detach())
2: M̀o ← Update history optimized spectral values to M̀o

3: Mo ← Ḿ · M̀o #optimize value and size of spectrum.

2. Why is spectrum transformation effective in
siamese-dominated change detection?

Here, we further analyze why spectrum transformation is
effective in siamese-dominated change detection. In the
change detection, we are provided with two geographically
registered images xt1 and xt2 from different phases. The
goal is to generate a change map Pout that indicates where
the change occurs between xt1 and xt2 . The above pro-
cess is a pixel-by-pixel binary classification of the bitem-
poral image, and can be defined as Eq. (1) in the original
text. xt1 and xt2 are first analyzed by the feature extrac-
tor f , then their features are extracted and compared, and
finally the different parts are classified by the classifier h.

With the deepening of research, scholars found that the
models are prone to detect the variant of the imaging con-
ditions (seasons or acquisition sensors) as change, which is
called the pseudo-changes. These pseudo-changes directly
affect the calculation of the difference feature in the interac-
tive operation, leading to the misjudgment of the h. Existing
work regards this pseudo-changes as a style shift. Thus, an
image x can be decoupled into content (scene structure) xc

and style (imaging condition) xs,

xt1 = xt1
c ⊕ xt1

s ,

xt2 = xt2
c ⊕ xt2

s ,
(1)

where ⊕ is the nonlinear superposition operation. Existing
GAN-based methods operate on pixels (i.e., on the x) in
the spatial domain and transform image styles to eliminate
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shifts, which makes them prone to excessively destroying
content xc. Then, it is necessary to find a style proxy to
achieve alignment that can avoid the loss of content xc by
providing explicit physical guidance (i.e., only operate on
xs). Traditional spectrum transformation (ST) achieve this
goal in image space,

F−1(x) = Fx
A + Fx

P . (2)

As shown in Eq. (1) in the original text, the interactive op-
eration is performed on the encoded features. If the style
part (amplitude spectrum Fx

A obtained by ST) of the im-
age is processed before encoding, the discriminability of
the obtained features for content Fx

P may be weakened. Be-
cause operations on Fx

A only indicate visual consistency and
may cause over-alignment. The stylized new image mapped
back to the spatial domain is prone to distortion, which neg-
atively affects the extraction of rich nonlinear features so
that h loses the key basis for analyzing the images. That
is, once the input is damaged, the loss will be irreversible.
To this end, we formulate ST into feature space and achieve
alignment directly based on the encoded features f(x),

F−1(f(x)) = Ff(x)
A + Ff(x)

P . (3)

Note that the object to be processed is Ff(x)
A and not Fx

A.
In the high-dimensional feature space, we first ensure the
acquisition of rich nonlinear representations based on the
original input images. Then, ST is only applied to the shal-
low layers of the neural network which mainly contain style
information. This significantly preserves the discrimina-
tive power of the features while precisely eliminating style
shifts.

3. Datasets and Experimental Setup
3.1. Datasets
In the original text, we use two datasets Season-Varying
Change Detection Dataset (SVCD) [11] and DSIFN Change
Detection Dataset (DSIFN) [17] to conduct experiments.
The SVCD has 11 image pairs obtained by Google Earth,
including 7 pairs with the original size of 4725× 2700 and
4 pairs with the original size of 1900×1000. The spatial res-
olution is from 3 cm to 100 cm per pixel. All images are fur-
ther cropped to 256 × 256 patches. We use 10,000 patches
as the training set, 3,000 patches as the validation set, and
3,000 patches as the testing set. The DSIFN is collected
from Google Earth and consists of 6 pairs covering six
cities in China, Beijing, Chengdu, Shenzhen, Chongqing,
Wuhan, and Xian. Each image has a high resolution of 2 m.
The five original image pairs (Beijing, Chengdu, Shenzhen,
Chongqing, and Wuhan) are further cropped into 394 pairs
of size 512×512. After applied data augmentation on them,
3,940 image pairs are obtained, 90% of which are used for

training and the remaining 10% for validation. The orig-
inal image pairs from Xian are also cropped into patches
of the same size for testing. Since the images for training
and testing the model come from different places, the gen-
eralization ability of the model has great challenges in this
dataset.

3.2. Implementation Details
The batch size is set to 16. The SGD is adopted as our
optimizer to optimize the network parameters, where the
weight decay rate is set to 1 × 10−8 and momentum is set
to 0.9. The initial learning rates of the network and EB-
AA/LS are set to 1×10−4 and 1×10−3 respectively, which
are decayed following a polynomial learning rate schedul-
ing with a power of 0.9 during training. To evaluate the
performance of our method, we utilize four standard evalu-
ation metrics, i.e., precision (Prec.), recall (Rec.), F1-score
(F1), and intersection over union (IoU). All experiments are
implemented in PyTorch 1.8 on an Nvidia Tesla RTX3090
GPU with 24GB of memory.

3.3. Network
We adopt the widely used FC-Siam-diff-res [5] as base net-
work to analyze the effectiveness of our method FeaSpect.
The proposed FST strategy is only embedded in the first two
layers of the FC-Siam-diff-res.

4. Learned Strides on Different Datasets
We visualize the learning trajectory of strides on the SVCD
dataset in the original text. To further analyze the trend of
the learned strides on different data, we first provide the
learning trajectory of the stride on the DSIFN dataset in
Fig. 1. We then provide the distribution of learned strides
on both datasets, as shown in Fig. 2. In Fig. 2, we can see
that the distribution of learned strides (by EB-LS) are dif-
ferent on SVCD and DSIFN, showing that our method can
adaptively handle different style variations.
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Figure 1. Visualization of different channels of the learned strides
on DSIFN dataset.

5. Ablation Studies
In addition to the ablation study on the SVCD dataset in
the original text, we additionally provide an ablation study
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Figure 2. Visualization of distribution of the learned strides on
different datasets.

Model FST EB-AA EB-LS Prec.(%) Rec.(%) F1(%) IoU(%)
Baseline [5] 57.47 67.23 61.97 44.90

FeaSpect-fixed ✓ 65.08 68.11 66.56 49.88
FeaSpect-AA ✓ ✓ 67.76 69.01 68.38 51.95
FeaSpect-LS ✓ ✓ 68.95 69.83 69.39 53.12

FeaSpect (ours) ✓ ✓ ✓ 69.47 70.27 69.87 53.69

Table 1. Ablation studies for each component of our method on
DSIFN dataset.

on the DSIFN dataset to verify the effectiveness of the pro-
posed method FeaSpect.

As shown in Table 1, the base model (Baseline) achieves
57.47%, 67.23%, 61.97%, and 44.90% on the four eval-
uation metrics. Adding the FST with fixed content and
stride to the base model (FeaSpect-fixed) surpasses Base-
line on four evaluation metrics by 7.61%, 0.88%, 4.59%,
and 4.98%, respectively. By adding the extraction box with
adaptive attention (EB-AA) based on the FST, FeaSpect-
AA further boosts the performance of the model, which im-
proved by 2.68%, 0.90%, 1.82%, and 2.07%. By adding the
extraction box with learnable strides (EB-LS), FeaSpect-LS
improves the performance to a higher extent than adding the
EB-AA, i.e., 3.87%, 1.72%, 2.83%, and 3.24%. Finally,
combining the FST with the EB-AA and EB-LS (FeaSpect)
achieves the best performance on the four evaluation met-
rics, i.e., 69.47%, 70.27%, 69.87%, and 53.69%. The above
experimental results further prove that the mechanisms pro-
posed in our method are effective and complementary to
each other.

6. Comparison of Generalization
To explore our method’s ability to learn domain-agnostic
features, we conduct experiments in a domain generaliza-
tion setting. The model trained on the SVCD dataset is di-
rectly tested on the SZADA dataset [2] to evaluate its per-
formance. The results are reported in Table 2. Existing
methods suffer from severe performance degradation due to
domain shift caused by cross-geographic regions. In con-
trast, our method is relatively less degenerate on domain
generalization setting. Compared to existing methods, our
method finally achieves the best results on the two evalua-

tion metrics. We consider this to occur because the absence
of domain shift between features during training allows the
model to focus on learning the essential characteristics (tex-
ture and shape, etc.) of the object. This acquired ability
greatly assists the model in accurately identifying changed
pixels. In addition, the performance degradation of methods
based on the transformer backbone is relatively alleviated.
We analyze that the powerful ability of large models to cap-
ture relationships between features is more conducive to the
model learning robust representations.

ConvNet
-based

FC-EF FC-Siam-conc STANet DSAMNet ESCNet Ours (U-Net)

F1(%) IoU(%) F1(%) IoU(%) F1(%) IoU(%) F1(%) IoU(%) F1(%) IoU(%) F1(%) IoU(%)

24.3 13.8 15.4 8.3 14.7 7.9 11.8 6.3 17.5 9.6 43.2 27.6

Transformer
-based

BIT SwinsUNet ChangeFormer - - Ours (MiT-B1)

F1(%) IoU(%) F1(%) IoU(%) F1(%) IoU(%) - - - - F1(%) IoU(%)

28.1 16.4 29.4 17.2 33.2 19.9 - - - - 47.0 30.7

Table 2. Comparison results of testing on SZADA dataset using
the model trained on SVCD dataset.

7. Comparison on More Datasets
For binary change detection, in addition to the datasets used
in the original text, we also provide comparative results on
other datasets to fully evaluate our method, including the
SYSU-CD [14] and LEVIR-CD [3] datasets. The results
are reported in Tables 3 and 4, respectively. As shown
in the two tables, our method achieves better performance
than existing methods on multiple datasets. We analyze that
this significant improvement is contributed by adaptively
capturing domain information so that features can be well
aligned.

8. Comparisons on More Tasks
To verify the scalability of our method, we compare our
method with existing methods on the benchmarks of se-
mantic change detection (SECOND [16] and Hi-UCD [15]
datasets) and building damage assessment (xBD dataset
[7]), respectively. The results are reported in Table 5. As
shown in Table 5, our method significantly improves the
baseline (BDANet [13]) and even outperforms the SOTA
method (SCanNet [6]), confirming our method’s scalability
in more tasks. The above analysis and results demonstrate
that our method can achieve accurate detection in diverse
and challenging scenarios by carefully learning object char-
acteristics without domain shift interference.

9. Comparison and Discussion of Efficiency
To compare the computational efficiency, we record the
number of parameters (Params.), floating-point operations
per second (FLOPs), training time per epoch (T/E), and in-
ference time (Time) of each method. These metrics reflect
the computational efficiency of each method from multiple



Method Backbone Pre.(%) Rec.(%) F1(%) IoU(%)
• ConvNet-based:
FC-EF [5] U-Net* 74.21 79.41 76.72 62.23
FC-Siam-conc [5] U-Net* 76.47 76.24 76.35 61.75
FC-Siam-diff-res [5] U-Net⋆ 76.92 79.01 77.96 63.87
FCN-PP [12] U-Net* 69.81 76.90 73.18 57.71
W-Net [8] U-Net* 71.08 78.42 74.57 59.45
CDGAN [8] U-Net* 70.51 79.03 74.53 59.40
STANet [3] ResNet-18* 70.98 81.21 75.75 60.97
DSAMNet [14] ResNet-18* 73.93 78.31 76.06 61.36
ESCNet [19] ResNet-18⋆ 80.06 79.15 79.60 66.12
SEIFNet [9] ResNet-18* 84.02 79.16 81.52 68.80
ChangeSTAR [20] ResNet-101⋆ 82.73 79.61 81.14 68.27
FeaSpect (Ours) U-Net⋆ 85.70 80.64 83.09 71.08
FeaSpect (Ours) ResNet-18⋆ 86.01 80.84 83.34 71.45
FeaSpect (Ours) ResNet-101⋆ 86.53 81.21 83.79 72.10
◦ Transformer-based:
BIT [4] ViTAEv2-S⋆ 79.24 76.55 77.87 63.76
VcT [10] ViTAEv2-S* 84.15 71.76 77.46 63.22
SwinsUNet [18] Swin-Trans⋆ 83.91 72.58 77.83 63.71
ChangeFormer [1] MiT-B2⋆ 84.87 71.05 77.35 63.06
FeaSpect (Ours) ViTAEv2-S⋆ 86.33 81.09 83.63 71.86
FeaSpect (Ours) MiT-B1 86.41 81.17 83.71 71.98
FeaSpect (Ours) MiT-B2⋆ 86.89 81.65 84.19 72.69
FeaSpect (Ours) Swin-Trans⋆ 87.10 81.94 84.44 73.07

Table 3. Comparison results on SYSU-CD dataset. */⋆ defines the
backbone model modified in different/same ways.

Method Backbone Pre.(%) Rec.(%) F1(%) IoU(%)
• ConvNet-based:
FC-EF [5] U-Net* 85.83 79.96 82.79 70.64
FC-Siam-conc [5] U-Net* 85.72 77.15 81.21 68.36
FC-Siam-diff-res [5] U-Net⋆ 89.91 80.20 84.78 73.58
FCN-PP [12] U-Net* 84.01 75.42 79.48 65.95
W-Net [8] U-Net* 88.49 85.17 86.80 76.68
CDGAN [8] U-Net* 89.68 86.01 87.81 78.26
STANet [3] ResNet-18* 83.92 90.01 86.86 76.77
DSAMNet [14] ResNet-18* 84.60 89.19 86.83 76.73
ESCNet [19] ResNet-18⋆ 86.12 88.53 87.31 77.48
SEIFNet [9] ResNet-18* 91.67 88.84 90.23 82.20
ChangeSTAR [20] ResNet-101⋆ 90.72 89.20 89.95 81.74
FeaSpect (Ours) U-Net⋆ 92.16 90.04 91.09 83.63
FeaSpect (Ours) ResNet-18⋆ 92.30 90.11 91.19 83.81
FeaSpect (Ours) ResNet-101⋆ 92.59 90.28 91.42 84.20
◦ Transformer-based:
BIT [4] ViTAEv2-S⋆ 89.92 89.06 89.49 80.98
VcT [10] ViTAEv2-S* 91.89 87.94 89.87 81.61
SwinsUNet [18] Swin-Trans⋆ 90.01 89.61 89.81 81.50
ChangeFormer [1] MiT-B2⋆ 91.56 88.74 90.13 82.03
FeaSpect (Ours) ViTAEv2-S⋆ 92.43 90.19 91.30 83.99
FeaSpect (Ours) MiT-B1 92.50 90.26 91.37 84.10
FeaSpect (Ours) MiT-B2⋆ 92.61 90.30 91.44 84.23
FeaSpect (Ours) Swin-Trans⋆ 92.94 90.38 91.64 84.57

Table 4. Comparison results on LEVIR-CD dataset. */⋆ defines
the backbone model modified in different/same ways.

Method Year
SECOND Dataset Hi-UCD Dataset xBD Dataset

OA(%) mIoU(%) Sek(%) OA(%) mIoU(%) Sek(%) F1b(%) F1d(%) F1o(%)
BDANet 2022 85.7 68.9 18.3 87.9 56.5 22.3 86.4 78.2 80.6
SCanNet 2024 87.6 73.3 23.8 91.7 61.8 27.5 87.3 78.7 81.3

Ours - 89.3 74.6 23.9 92.1 62.8 28.1 89.0 80.7 83.2

Table 5. F1b: F1-score of building localization. F1d: F1-score of
damage classification. F1o: Overall F1-score, 0.3F1b+0.7F1d.

perspectives in time and space. We also calculate the “pa-
rameters/time per epoch” (P/T) to represent the efficiency of
the model [21], where lower values indicate higher model

FeaSpect

ESCNet

STANet

DSAMNet

FC-Siam-diff-res

FC-EF

FC-Siam-conc

FCN-PP

W-Net

CDGAN

Accuracy and Efficiency Trade-off

Figure 3. Trade-off between accuracy and efficiency for each
method on SVCD dataset.

efficiency. For a fair comparison, all methods are repro-
duced and tested on the same server, which equipped with
an Nvidia Tesla RTX3090 GPU with 24G memory. As
shown in Table 6, FC-EF, FC-Siam-conc, and FC-Siam-
diff-res have lower trainable parameters and computational
cost while their detection accuracy is not impressive. Re-
cent methods STANet, DSAMNet, and ESCNet achieve
better accuracy but have higher time and space complex-
ity. In comparison, our method not only achieves the best
accuracy but also has the smallest trainable parameters and
acceptable computational cost. Importantly, our FeaSpect
only costs about 13ms to generate a change map for each
image, which is crucial for practical applications.

We plot Fig. 3 to illustrate the trade-off between accu-
racy and efficiency of the model. P/T is taken as the abscissa
and F1-score as the ordinate. A superior accuracy/efficiency
trade-off implies a model with higher accuracy and lower
efficiency. FC-Siam-diff-res, FC-EF, and FC-Siam-conc
methods are close to the left-bottom area in the figure, sig-
nifying good efficiency but struggling to achieve sufficient
accuracy. ESCNet, STANet, and DSAMNet methods are
close to the left-top corner, showcasing better accuracy than
other methods but with less efficiency. The proposed Fea-
Spect stands out in the upper-left corner, attaining the best
accuracy/efficiency trade-off among existing methods.

10. Visual Comparison of Detection Results
To further demonstrate the superiority of the proposed
method FeaSpect, we provide a visual comparison of detec-
tion results. The visual comparisons on the SVCD dataset
are demonstrated in Fig. 4 and Fig. 5. As shown in Fig.
4(d)-(i) and Fig. 5(d)-(i), for large objects, small objects and
complex scenes, the detection results of existing methods
are scattered and their boundaries are not smooth. Among
these methods, false detections often occur, and the detected
changed objects do not have basic contours. For example,
the edges of each car in Fig. 4(d)-(i) are indistinct, i.e., trun-
cated or stitched with other changed areas. In Fig. 5(d)-(i),



Method FC-EF FC-Siam-conc FC-Siam-diff-res FCN-PP W-Net CDGAN STANet DSAMNet ESCNet FeaSpect

Train

Params. (MB) 1.35 1.55 1.35 27.81 40.49 115.12 16.93 17.00 5.12 1.35
FLOPs (GB) 2.68 4.06 3.50 34.81 94.89 164.74 14.40 37.02 11.65 4.40

T/E (s) 180.00 181.80 182.40 195.00 235.20 551.08 374.40 300.00 192.02 183.00
P/T (MB/102s) 0.75 0.85 0.74 14.26 17.22 20.89 4.52 5.67 2.67 0.74

Test
Time (ms) 13.04 13.58 13.56 30.49 16.28 51.91 41.28 58.03 130.97 13.00

F1-score (%) 82.46 80.22 86.02 87.21 88.91 89.26 91.33 92.90 92.83 95.81

Table 6. Comparison of computational efficiency of different methods on SVCD dataset. The image input into the model has a size of
256× 256× 3. Time is reported by computing the average inference time on 100 randomly selected images.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4. Quantitative comparison results of different methods on
the SVCD dataset. (a) Image xt1 . (b) Image xt2 . (c) Ground
truth. (d) FC-EF. (e) FC-Siam-conc.(f) FCN-PP. (g) STANet. (h)
DSAMNet. (i) ESCNet. (j) Baseline (FC-Siam-diff-res). (k)
FeaSpect-fixed. (l) FeaSpect.

the same false detection also occurs for detecting the target
object ditch. Furthermore, due to style differences caused
by illumination and shadows, the existing methods pro-
duce overdetection for those pixels with style shifts. From
Fig. 4(d)-(i) and Fig. 5(d)-(i), we can see that all exist-
ing methods detect road or grass areas as changed pixels to
varying degrees. In contrast, our methods FeaSpect-fixed
and FeaSpect achieve the most superior visual results and
avoid overdetection of pseudo-changed pixels. Although
FeaSpect-fixed produces some missed detections, by further
making the stride of the extraction box learnable, FeaSpect
accurately detects almost all detailed changes.

11. Presentation of More Generated Data

As mentioned in the original text, existing transformation-
based methods utilize generative adversarial networks
(GANs) to align the styles of bitemporal images, and these
efforts are limited by the complexity of optimizing GANs
and the absence of guidance from physical properties, lead-

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5. Quantitative comparison results of different methods on
the SVCD dataset. (a) Image xt1 . (b) Image xt2 . (c) Ground
truth. (d) FC-EF. (e) FC-Siam-conc.(f) FCN-PP. (g) STANet. (h)
DSAMNet. (i) ESCNet. (j) Baseline (FC-Siam-diff-res). (k)
FeaSpect-fixed. (l) FeaSpect.
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Figure 6. Presentation of data generated by transformation-based
methods utilizing generative adversarial networks (GANs).

ing to transformed images susceptible to distortion from
artifacts. Therefore, in addition to Fig. 1(b) in the origi-
nal text, we additionally provide more transformed images
generated by GANs in Figs. 6-7. As shown in the orange
rectangular boxes in Fig. 6-7, there is obvious distortion in
the transformed images. This seriously reduces the discrim-
inability of features, thereby affecting the model’s accurate
detection of changed areas.
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Figure 7. Presentation of data generated by transformation-based
methods utilizing generative adversarial networks (GANs).
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