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Supplementary Material

A. Dataset Specifications
This section complements the overview of the dataset by
detailing the video sequences and providing additional his-
tograms for depth and disparity.

A.1. Sequences
The HELVIPAD dataset includes 26 video sequences
captured between December 2023 and February 2024.,
recorded at a frame rate of 10 Hz.

Each sequence is synchronized with its corresponding
LiDAR point clouds, which are projected on frames to ob-
tain depth maps, and subsequently disparity maps. Top im-
ages, bottom images, depth maps, and disparity maps are
then cropped to remove unnecessary borders and downsized
from a width of 1024 pixels to 512 to enable more efficient
training.

The sequences span a diverse array of settings and con-
ditions, as detailed in Tab. 4. The dataset includes record-
ings taken at various times of the day, from early morn-
ing to night, under a variety of weather conditions, includ-
ing cloudy and sunny skies. These recordings were made
in multiple indoor and outdoor locations, from pedestrian
squares and footpaths to corridors and parking areas, offer-
ing a wide spectrum of environmental contexts. The table
also provides information on the duration of each sequence,
with an average of 2 minutes and 41 seconds. Furthermore,
the dynamic nature of the recorded scenes is emphasized by
the presence of pedestrians, with an average of 13.33 pedes-
trians in indoor sequences and 17.65 pedestrians in outdoor
sequences.

A.2. Additional Histograms of Depth and Disparity
Labels

In addition to the histograms provided in the main pa-
per, we include more detailed histograms of depth labels
(Fig. 9) and disparity labels (Fig. 13) across the train and
test splits. Additionally, we provide histograms for the
augmented train set, i.e., after depth completion, including
depth (Fig. 10) and disparity Fig. 14.

The analysis shows that train and test distributions main-
tain consistent patterns across each environment — indoor,
outdoor, and night outdoor settings —, suggesting a well-
aligned partition. Notably, a distinct concentration of short-
range distances within the 0–10 meter range in all settings
is attributed to the LiDAR laser capturing the ground sur-
face in each environment. Furthermore, the data exhibits
an exponential decay in pixel percentage with increasing
depth, correlating with the decrease in LiDAR precision

over longer distances. A comparison between indoor and
outdoor scenes reveals that indoor sequences, both in train-
ing and testing, exhibit a more rapid decline in pixel per-
centage beyond 10 meters. A similar pattern is observed
for disparity values, where train and test distributions align
closely. As anticipated, we identify higher disparity val-
ues for indoor sequences compared to outdoor scenes due to
the greater angular difference between the two cameras for
points projected closer to the recording system and lower
disparity for further away objects.

When comparing the depth distributions in the training
set before and after depth completion, we observe that depth
completion increases the density of low-range depth values,
particularly within the 0–10 meter range. This shift is likely
a result of the algorithm interpolating missing values and
removing out-of-distribution samples. This process tends
to enrich the representation of closer objects in the dataset.
Similar conclusions can be drawn when comparing dispar-
ity distributions before and after depth completion.

B. Data Collection

This section provides details about the acquisition device,
the synchronization between sensors and dataset quality.

B.1. Data Capture Setup

The hardware setup consists of a custom-designed support
system that aligns all devices horizontally and stacks them
vertically. The system integrates two Ricoh Theta V cam-
eras, which capture images in 4K/UHD equirectangular for-
mat at 30 fps with an initial resolution of 3840 × 1920 pix-
els. It also includes an Ouster OS1-64 LiDAR sensor, op-
erating at 10 fp with 64 beams and a vertical field of view
of 42.4°. The LiDAR is mounted at the bottom, with the
first camera at the top (“top camera”) and the second cam-
era in the middle (“bottom camera”). The vertical distances
between the devices are precisely configured, with 19.1 cm
separating the two camera lenses and 45 cm between the
LiDAR and the bottom camera, as shown in Fig. 8.

The cameras function as external modules, while the Li-
DAR operates via Robot Operating System (ROS) on an
embedded NVIDIA Jetson Xavier. This central processor
manages data capture and ensures synchronization across
all devices. The entire setup is mounted on a custom-built,
remotely controlled robot chassis, offering mobility and a
fully integrated, portable acquisition solution.



Sequence Split Date Setting Dur. Time of day Area type Weather # Fr. # Peds

20231206 REC 01 OUT train 2023-12-06 outdoor 01:46 afternoon ped. sq. cloudy 1001 37
20231206 REC 02 OUT test 2023-12-06 outdoor 03:45 afternoon ped. sq. cloudy 1911 45
20240120 REC 02 OUT train 2024-01-20 outdoor 02:37 afternoon road sunny 1445 7
20240120 REC 03 OUT train 2024-01-20 outdoor 02:34 afternoon road sunny 1379 9
20240120 REC 04 OUT train 2024-01-20 outdoor 02:54 afternoon footpath sunny 1569 11
20240120 REC 05 IN train 2024-01-20 indoor 02:43 end of day corridor n.a. 1530 4
20240120 REC 06 IN test 2024-01-20 indoor 02:11 end of day corridor n.a. 998 29
20240120 REC 07 IN train 2024-01-20 indoor 01:54 end of day corridor n.a. 998 5
20240121 REC 01 OUT train 2024-01-21 outdoor 02:47 afternoon footpath sunny 1650 6
20240121 REC 02 OUT train 2024-01-21 outdoor 02:26 afternoon footpath sunny 1425 2
20240121 REC 03 OUT train 2024-01-21 outdoor 02:21 afternoon road sunny 1375 4
20240121 REC 04 OUT train 2024-01-21 outdoor 02:54 afternoon road sunny 1780 7
20240121 REC 05 OUT train 2024-01-21 outdoor 02:03 end of day road sunny 1237 6
20240124 REC 01 OUT train 2024-01-24 outdoor 02:48 morning road cloudy 1549 10
20240124 REC 02 OUT val 2024-01-24 outdoor 03:21 morning footpath cloudy 1675 10
20240124 REC 03 OUT test 2024-01-24 outdoor 02:54 morning ped. sq. cloudy 1681 9
20240124 REC 04 OUT train 2024-01-24 outdoor 03:51 morning road cloudy 2180 6
20240124 REC 05 OUT train 2024-01-24 outdoor 02:46 morning road cloudy 1500 4
20240124 REC 06 IN train 2024-01-24 indoor 02:32 afternoon corridor n.a. 1429 44
20240124 REC 07 NOUT train 2024-01-24 outdoor 02:51 night footpath night 1700 22
20240124 REC 08 NOUT test 2024-01-24 outdoor 03:51 night ped. sq. night 2925 54
20240124 REC 09 NOUT train 2024-01-24 outdoor 02:50 night footpath night 1800 58
20240124 REC 11 IN train 2024-01-24 indoor 01:39 end of day hall n.a. 1000 11
20240124 REC 12 IN val 2024-01-24 indoor 02:13 end of day hall n.a. 1320 13
20240127 REC 01 IN test 2024-01-27 indoor 02:01 morning corridor n.a. 1201 2
20240127 REC 02 OUT test 2024-01-27 indoor 02:20 morning parking n.a. 1430 2

Table 4. Overview of the collected sequences. Abbreviations: Dur. = Duration, displayed in minutes:seconds; ped. sq. = pedestrian
square; # Fr. = number of frames; # Peds = number of pedestrians.

Figure 8. HELVIPAD data acquisition setup: dual Ricoh Theta
V cameras in a top-bottom configuration above an Ouster OS1-64
LiDAR Sensor, and integrated with a NVIDIA Jetson Xavier.

B.2. Synchronization between sensors device

To ensure accurate synchronization between the sensors, we
use a hardware-triggered synchronization method. At the
start of each recording, an external flash lasting 33 ms is
activated in front of the cameras, creating a visible synchro-
nization marker in the video streams. Simultaneously, the
precise ROS timestamp of the flash event is recorded in the
LiDAR data, which provides a precise timestamp. During
post-processing, we identify the blinded frames and corre-
sponding ROS timestamps, re-aligning all data streams to
start from this synchronized reference, as shown in Fig. 11

To match the LiDAR’s frame rate (10 fps), we retain one
out of every three camera frames. The 33ms flash duration
ensures it is captured in at least one camera frame, with a
maximum potential de-synchronization of half a frame in-
terval (16.67 ms) if the flash occurs just after a frame is cap-
tured. This reasoning extends to the LiDAR-camera syn-
chronization, resulting in a maximum de-synchronization
of 16.67 ms across all sensors.



(a) All train sequences - Depth (b) Train indoor sequences - Depth (c) Train outdoor sequences - Depth (d) Train night outdoor sequences - Depth

(e) All test sequences - Depth (f) Test indoor sequences - Depth (g) Test outdoor sequences - Depth (h) Test night outdoor sequences - Depth

Figure 9. Histograms of depth labels across train (first row) and test splits (second row). Each plot’s vertical dotted line denotes the
average depth for the respective setting.

(a) All train sequences - Depth (b) Train indoor sequences - Depth (c) Train outdoor sequences - Depth (d) Train night outdoor sequences - Depth

Figure 10. Histograms of depth labels across across train splits after depth completion. Each plot’s vertical dotted line denotes the
considered setting average.

Figure 11. Synchronization of LiDAR and cameras using a
flash trigger. The illustration shows data alignment before (left)
and after (right) synchronization.

B.3. LiDAR-Image Projection Quality Assessment
In the absence of a reliable, standardized method to evaluate
the accuracy of LiDAR point projections onto equirectangu-
lar image planes, manual validation serves as a practical and
precise alternative. Visual inspection and manual selection
of corresponding points have been highlighted in studies
such as [10], where the authors emphasized the role of man-
ual evaluation in aligning data when automated methods are
insufficient. Similarly, in [11], the challenges of achieving

accurate projections without ground truth were addressed,
underscoring the importance of visual assessment for high-
precision tasks.

Therefore, in this work, we adopt a manual point selec-
tion approach to evaluate the projection of LiDAR points
onto 2D equirectangular image planes. This process in-
volves manually selecting corresponding points, such as ob-
ject edges, on both the LiDAR-projected data and the im-
ages. These selected points are then used to compute the
pixel-wise error, which quantifies the projection’s accuracy.

For each selected point pair, we calculate the Euclidean
distance between the projection point (xproj, yproj) and the
corresponding real point (xreal, yreal):

Error =
√

(xproj − xreal)2 + (yproj − yreal)2. (5)

This error is averaged across multiple images to provide
a comprehensive assessment of the projection’s accuracy.
Additionally, a relative error metric is computed by normal-
izing the pixel error by the image diagonal, enabling a con-



Figure 12. Illustration of LiDAR point projection onto an
equirectangular image. The red dots represent the projected
points from LiDAR data, while the green dots indicate the ex-
pected projection points on the image. The red arrows show the
pixel-wise error between the projected points and the expected
points, which is used to quantify the projection accuracy. This
error metric aids in evaluating the fidelity of LiDAR-to-image pro-
jection in the HELVIPAD dataset.

sistent evaluation across different resolutions.
Tab. 5 provides a summary of the pixel-wise errors mea-

sured accross sequences in the dataset. Each sequence was
evaluated by manually selecting corresponding points be-
tween the projected LiDAR points and the equirectangular
images, followed by the calculation of Euclidean distances
as described earlier, and average errors for each sequence
are reported along with the overall dataset average.

Sequence Name Avg. Pixel Error (px) Relative Error (%)

20231206 REC 01 OUT 6.4 0.32
20240120 REC 02 OUT 9.5 0.48
20240120 REC 03 OUT 8.7 0.44
20240120 REC 04 OUT 7.1 0.36
20240120 REC 05 IN 10.2 0.51
20240120 REC 07 IN 6.8 0.34
20240121 REC 01 OUT 9.1 0.46
20240121 REC 02 OUT 7.5 0.38
20240121 REC 03 OUT 8.3 0.42
20240121 REC 04 OUT 7.9 0.40
20240121 REC 05 OUT 8.0 0.40
20240124 REC 01 OUT 10.4 0.52
20240124 REC 02 OUT 6.9 0.35
20240124 REC 04 OUT 8.1 0.41
20240124 REC 05 OUT 7.3 0.37
20240124 REC 06 IN 9.6 0.48
20240124 REC 07 NOUT 7.4 0.37
20240124 REC 09 NOUT 8.9 0.45
20240124 REC 11 IN 6.7 0.33
20240124 REC 12 IN 8.8 0.44

Overall 8.0 0.40

Table 5. Pixel-wise projection errors of LiDAR points onto
equirectangular images, per sequence. Relative error is ex-
pressed as a percentage of the image diagonal for context clarity.

The overall average pixel error across the dataset is 8.0
pixels, corresponding to a relative error of 0.40% of the
image diagonal. This level of precision validates the high-
quality LiDAR-to-image projection tasks in the HELVIPAD
dataset.

C. Depth Completion
This section provides an in-depth evaluation of our depth
completion pipeline, detailing the evaluation methods, hy-
perparameter selection, and comparison of temporal aggre-
gation techniques. Quantitative and qualitative results are
also presented to demonstrate the effectiveness of our ap-
proach.

C.1. Evaluation Method
The evaluation of our depth completion method follows a
structure akin to standard machine learning. The dataset is
split into training and test sets, then performance metrics
are computed on the test set within the 3D space.

Creation of training and test set. To identify the optimal
hyperparameters for depth completion, the points of each
measured point cloud are divided into a training and test set
using a classical 80-20-split. Points are sampled from a uni-
form distribution over all input points without replacement.

This approach primarily evaluates metrics over points
with low distances to its neighbors, which are easier to es-
timate. When the pipeline generates points on a uniform
grid (e.g., an image), the metrics reflect lower bounds on
actual errors due to this distribution shift. While this bias
limits direct comparison to image-based errors, it is accept-
able for hyperparameter optimization and data augmenta-
tion purposes.

Evaluation metrics. To evaluate the merits of different
options for the depth completion pipeline, we calculate
the following metrics: Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), mean absolute relative error
(MARE), Inlier Ratio (IR) and Actual Ratio of Interpolated
Points (ARIP). The calculation of the first three mentioned
metrics is the same as for depth estimation methods and can
be found in Appendix D.1. The IR corresponds to the ratio
of estimated depth labels that have an absolute error of less
than tinlier = 1%. Given the number N of estimated depths
among points of all point clouds and sequences, the IR can
be calculated in the following way:

IR =
1

N

N∑
i=1

I|rest, i−rtrue, i|<tinlier . (6)

In Sec. 3.3, the RIP is defined as the ratio of interpolated
points after filtering. As the uncertainty estimates of all



(a) All train sequences - Disparity (b) Train indoor sequences - Disparity (c) Train outdoor sequences - Disparity (d) Train night outdoor sequences - Disparity

(e) All test sequences - Disparity (f) Test indoor sequences - Disparity (g) Test outdoor sequences - Disparity (h) Test night outdoor sequences - Disparity

Figure 13. Histograms of disparity labels across train (first row) and test splits (second row). Each plot’s vertical dotted line denotes
the average disparity for the respective setting.

(a) All train sequences - Disparity (b) Train indoor sequences - Disparity (c) Train outdoor sequences - Disparity (d) Train night outdoor sequences - Disparity

Figure 14. Histograms of disparity labels across train splits after depth completion. Each plot’s vertical dotted line denotes the
considered setting average.

query points within one sequence do not fit into memory,
thresholds for the uncertainty-based filtering are calculated
for each point cloud and then averaged per sequence. This
leads to an ARIP which differs slightly from the desired
RIP.

Ratio of labeled pixels. To calculate the ratio of labeled
pixels the region within an image that contains potential
labeled pixels must be identified. While the whole im-
age width W can be labeled, the potential labeled region
along the height is restricted. Specifically, the minimum
(Hmin) and maximum (Hmax) height with potential labels
depend on the distance r of the points at the minimum (θmin)
and maximum (θmax) of the LiDAR’s vertical field of view.
For each image, we individually determine Hmin and Hmax
based on the smallest and largest row index containing at
least one label in the original depth map. Any labels in the
completed depth map that fall outside this height range are
filtered out. With this, the Ratio of Labeled Pixels (RLP)

can be calculated as a function of the total number of la-
beled pixels nlabel in the entire image:

RLP(nlabel) =
nlabel

W × (Hmax −Hmin)
(7)

C.2. Choice of Hyperparameters

This section describes how the hyperparameters for the
depth completion pipeline, introduced in Sec. 3.3, have
been chosen.

Number of aggregated point clouds. For temporal ag-
gregation, we fuse the m previous and m following point
clouds. The minimum MARE for all sequences is observed
for m = 4 (Fig. 15a). However, the MAE continues to de-
crease for all sequences except indoor, where it increases
for higher m values (Fig. 15b). As the total number of
points for all indoor sequences is lower than for all out-
door and night outdoor train sequences, the error for all
sequences is less influenced by indoor sequences. We set
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Figure 15. Selected metrics with a variable number of aggregated point clouds (Fig. 15a and Fig. 15b) or m = 4 previous / next point clouds
(Fig. 15c and Fig. 15d) on all, indoor, outdoor and night outdoor train sequences. The ratio of interpolated points is set to RIP = 80%
and k = 4 is chosen as the numbers of neighbors (Fig. 15a and Fig. 15b) or a variable number of neighbors k (Fig. 15c and Fig. 15d). We
report all depth metrics in m

m = 4 to provide high quality depth labels also for indoor
sequences and low depth values.

Number of neighbors. The number of neighbors k in
interpolation can be observed to reduce the MARE until
k = 17 is reached (Fig. 15c). Then, the MARE then be-
comes greater again. However, the IR starts to decrease
from k = 3 already (Fig. 15d). We select k = 17 because
the positive influence on the MARE is greater than the neg-
ative influence on the IR.
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Figure 16. MARE for m = 4 on all, indoor, outdoor and night
outdoor sequences. A variable ARIP is interpolated with k = 17
neighbors.

Ratio of interpolated points. As expected, the evaluation
metrics become worse for a higher ARIP. By observing the
MARE in dependence of the ARIP in Fig. 16, it can be seen
that setting this ratio slightly below 1 reduces the MARE
significantly. Setting RIP = 0.8 for ARIP ≈ 0.8 appears to
represent a good balance between the provision of labels for
a large number of points and the simultaneous minimization
of the induced errors.

Out-of-distribution threshold. The out-of-distribution
threshold tOOD to filter query points with insufficient neigh-
bors cannot be determined based on the train-test split. In-
stead, a heuristic has to be derived theoretically. Each Li-
DAR scan provides depth labels on a spherical, regular grid

with a vertical, angular resolution of

∆θ =
FOVv

nbeams
=

42.4◦

64
≈ 0.66◦ (8)

and a horizontal, angular resolution of

∆φ =
FOVh

nchannels, h
=

360◦

1024
≈ 0.35◦. (9)

Given the number of accumulated point clouds 2m+ 1 and
the number of neighbors for interpolation k and the assump-
tion that all accumulated scans provide measurements in the
neighborhood of a query position, the number of neighbors,
chosen per LiDAR scan, nneighbors, grid can be approximated
to:

nneighbors, grid =
k

2m+ 1
=

17

9
≈ 2. (10)

A position in the regular LiDAR depth grid has the maxi-
mum distances to its 2 nearest neighbors, if its position is
exactly in the middle of two rows and two columns in the
grid. As a result, the average distance dq of a query position
(θq, φq) to its neighbors is below the following threshold, if
all accumulated point clouds provide labels in the region of
the query:

tOOD =

√(
∆θ

2

)2

+

(
∆φ

2

)2

≈ 0.37◦. (11)

Number of spherical grid points. To map the points
from the 3D space to the image we create a spherical grid
with approximately uniformly distributed points. The num-
ber of spherical grid points is set to ngrid = 20, 000, 000.
This value represents a compromise between high compu-
tational loads for high ngrid values and missing depth infor-
mation for the subsequent projection for low ngrid. Missing
depth information leads to less labeled pixels.



Method ARIP ↑ MAE ↓ RMSE ↓ MARE ↓ IR ↑
No Aggregation 0.811 0.096 0.864 0.011 0.757
No Movement 0.841 0.093 0.801 0.012 0.749
KISS-ICP 0.828 0.103 0.828 0.017 0.618

Table 6. Evaluation metrics for different temporal aggregation
methods with m = 1, RIP = 0.8 and k = 4 on all test sequences.
We report all depth metrics in m. The best results are highlighted
in bold.

Range of spherical grid points. As the vertical field of
view of the LiDAR sensor is limited, we filter all grid points
that are out of its view. The value for the threshold limiting
the polar angle can be determined in the following way:

tθ =
180◦ − FOVv

2
=

180◦ − 42.4◦

2
= 68.8◦. (12)

All query grid points whose polar angle θq is not in the
range θq ∈ [tθ, 180

◦ − tθ] are not mapped to the image.
To summarize, we set the hyperparameters in the follow-

ing way: m = 4, k = 17, RIP = 0.8, tOOD ≈ 0.37◦,
ngrid = 20, 000, 000 and tθ = 68.8◦.

C.3. Temporal Aggregation Comparison

To aggregate multiple point clouds, previous and following
scans can be aggregated directly (no movement) or trans-
formed based on odometry information of the robot. The
HELVIPAD dataset provides only omnidirectional stereo im-
ages and LiDAR point clouds but no odometry information.
KISS-ICP [33] is one of the state-of-the-art approaches for
LiDAR odometry. It is based on the ICP algorithm and cre-
ates a local map of the environment. As it is not possible
to evaluate the quality of estimated odometry data with the
dataset, using a robust method that does not need hyperpa-
rameter optimization, such as KISS-ICP, is a suitable choice
to obtain odometry information for the dataset.

We compare no temporal aggregation (no aggregation),
temporal aggregation without transforming point clouds
(no movement) and temporal aggregation based on odom-
etry information obtained with the KISS-ICP (KISS-ICP)
in Tab. 6. The KISS-ICP approach yields the least favor-
able results in most of the metrics. This may be attributed
to the presence of moving people in the scene, coupled
with the employed interpolation method. No movement is
clearly better than no aggregation in RMSE and slightly bet-
ter in MAE. No aggregation is the best approach in terms of
MARE and IR. However, it must be noted that the ARIP is
also the lowest for this method. Consequently, the MARE
and IR for the same ratio may be lower than the ones of the
no movement method. Overall, the results of the no move-
ment temporal aggregation method are the most favorable.
Thus, we use it for the temporal aggregation.

C.4. Results

Quantitative results. The evaluation metrics, described in
Appendix C.1, for the final hyperparameter configuration,
specified in Appendix C.2, are summarized in Tab. 7. MAE,

Sequences ARIP ↑ MAE ↓ RMSE ↓ MARE ↓ IR ↑
All 0.839 0.054 0.398 0.007 0.856

Indoor 0.840 0.046 0.264 0.008 0.828

Outdoor 0.836 0.058 0.440 0.007 0.859

Night outdoor 0.857 0.048 0.371 0.006 0.894

Table 7. Evaluation metrics for the final hyperparameters of the
depth completion on all, indoor, outdoor, and night outdoor train
sequences. We report all depth metrics in m.

RMSE and MARE are significantly lower than the depth
results of the depth estimation baselines of Tab. 2. Thus,
the induced errors by the depth completion are acceptable
as a data augmentation technique.

Tab. 8 exhibits that the RLP, as defined in Appendix C.1,
is increased approximately by a factor of 5 following the
application of depth completion across all sequence types.
The maximum number of labelable pixels nlab, max corre-
sponds to the denominator in Eq. (7).

Sequences nlab, max nlab, ori RLPori nlab, aug RLPaug

All 14.4B 1.7B 11.9% 9.6B 60.7%

Indoor 3.1B 0.4B 12.8% 1.9B 62.1%

Outdoor 9.6B 1.1B 11.5% 5.7B 59.9%

Night outdoor 1.7B 0.2B 11.8% 1.1B 62.0%

Table 8. Maximum number of labelable pixels nlab, max, labeled
pixels nlab and ratio of labeled points RLP for all, indoor, outdoor,
and night outdoor train sequences.

Qualitative results. Fig. 17 depicts a completed depth map
and an original depth map together with the corresponding
image of a patch from an outdoor sequence. In areas of
homogeneous depth within the LiDAR’s field of view, the
completed depth map provides dense depth labels. It is evi-
dent that the depth completion method does not provide la-
bels for pixels at object boundaries. For instance, this can be
observed at the street lamp located in the upper half of the
image, around column 165, as well as at the boundaries of
the tree in the upper half of the image, between columns 190
and 270. This is an understandable limitation, as it is chal-
lenging to ascertain the precise locations of such boundaries
based on depth data alone. Even in the original depth map,
it is evident that the boundaries of the tree are not clearly
defined, and also some measurements at its boundaries ap-



Figure 17. Depth completed depth map, original depth map and bottom image in detail view from an outdoor sequence.

Figure 18. Depth completed depth map, original depth map and bottom image in complete view from an indoor sequence.

pear to be erroneous. Consequently, minor discrepancies
may also be present in the measured point clouds.

The comprehensive representation of the indoor scene in
Fig. 18 substantiates the favorable visual impression of the
depth completion when the original depth map exhibits no

abrupt depth transitions. Instead of providing labels with
high errors in ambiguous regions, the original labels are re-
tained due to the filtering of regions with high uncertainty.

Overall, the majority of pixels are labeled when applying
depth completion, and no substantial errors are discernible



visually.

D. Benchmark Specifications
This section outlines the evaluation framework and bench-
mark specifications for assessing model performance on the
HELVIPAD dataset. Furthermore, it details the architecture
of 360-IGEV-Stereo adaptations.

D.1. Evaluation Metrics
To assess the performance of models, we rely on several
metrics, each providing insights into different aspects of
the model’s disparity and depth estimation accuracy. Given
the sparse nature of our ground-truth data for disparity and
depth, we apply a masking technique to evaluate models’
predictions only in areas with available ground truth values.
The metrics are computed by summing over all pixels for
which ground truth is available.

More formally, let us define I as the set of test set images
and pij a pixel j within. We denote the depth and disparity
ground truth values for a pixel j in image i ∈ I as rij and
dij respectively. Similarly, the corresponding values of
this pixel j in image i predicted by the model are denoted
respectively as r̂ij and d̂ij . Among all pixels of the image
i, we denote Ai the subset of pixels with available ground
truth values in the image.

• Mean Absolute Error (MAE): MAE measure the aver-
age magnitude of errors between the predicted and actual
disparity in degrees (and depth in meters), offering a di-
rect assessment of overall error. For disparity and depth
respectively, the MAE is defined as:

MAE =
1

|I|
∑
i∈I

1

|Ai|
∑
j∈Ai

|yij − ŷij | , (13)

where y can represent either the depth (r) or disparity (d)
values.

• Root Mean Square Error (RMSE): RMSE measures
the square root of the average squared differences, em-
phasizing larger errors. It is defined as:

RMSE =
1

|I|
∑
i∈I

√
1

|Ai|
∑
j∈Ai

||yij − ŷij ||2, (14)

where y can represent either the depth (r) or disparity (d)
values.

• Mean Absolute Relative Error (MARE): Considering
the varying range of disparity (and depth) values, MARE
is crucial. The metrics normalizes the error against the

actual depth values, offering a nuanced measure of accu-
racy. The MARE is defined as:

MARE =
1

|I|
∑
i∈I

1

|Ai|
∑
j∈Ai

∣∣∣∣yij − ŷij
yij

∣∣∣∣ , (15)

where y can represent either the depth (r) or disparity (d)
values.

• Left-Right Consistency Error (LRCE): This metrics
evaluates the consistency at the left and right boundaries
of 360° images by measuring the discrepancy between
predicted depth values across the image edges. In the
original work introducing LRCE [30], the metrics also ac-
counts for left-right discrepancies in ground-truth data to
address extreme cases where object edges align exactly
with the image boundaries. Due to the sparsity of the Li-
DAR depth maps in the test set, there are very few valid
points simultaneously at both image edges for comput-
ing LRCE metric (3 pixel pairs per image in average).
As an alternative, we use the depth-completed tests maps
(136 pixels in average) and compute LRCE with this aug-
mented ground-truth. Given Bi the subset of valid pixel
pairs in image i where ground-truth labels exist for both
the leftmost and rightmost columns (Bi ⊂ Ai), LRCE is
defined as the sum of absolute differences between left
and right edges for both predicted and ground-truth dis-
parity values:

LRCE =
1

|I|
∑
i∈I

1

|Bi|
∑
j∈Bi

∣∣∣egt
i,j − epred

i,j

∣∣∣ , (16)

where ei,j = |dleft,i,j − dright,i,j | is the left-right discrep-
ancy term in image i for pixel pair j, computed for pre-
dicted disparity error (epred

i,j ) and ground-truth disparity er-
ror (egt

i,j).

D.2. Implementation Details

In the following, we elaborate on the implementation and
training details of each model included in the benchmark.
All our experiments are conducted using Nvidia A100-
SXM4-80GB GPUs.

PSMNet. Despite its age, PSMNet is a robust and popular
method for conventional stereo depth estimation that we in-
cluded in our benchmark. Our implementation is based on
the code provided by the authors2. We initialize our model
with weights from a SceneFlow-pretrained model and fine-
tune it on our dataset for 24 epochs. The model is trained
with a batch size of 20 images, with an Adam optimizer, an
initial learning rate of 0.0001, and no weight decay.

2https://github.com/JiaRenChang/PSMNet

https://github.com/JiaRenChang/PSMNet


360SD-Net. The model is trained from scratch for 40
epochs using an Adam optimizer with an initial learning rate
of 0.001, no weight decay, and a batch size of 16. It under-
goes further fine-tuning for 10 epochs at a reduced learning
rate of 0.0001 to enhance performance. Our implementa-
tion is based on the code provided by the authors3.

IGEV-Stereo. Again, our implementation is based on the
code provided by the authors4. We initialize the model
from SceneFlow-pretrained weights and fine-tune it on our
dataset employing an AdamW optimizer and a one-cycle
learning rate schedule with a maximum learning rate of
3e−5, alongside a weight decay of 1e−5. The training spans
200k steps with a batch size of 16, equivalent to approxi-
mately 92 epochs.

360-IGEV-Stereo. We adapt the IGEV-Stereo code to in-
clude our architecture modification stated in the paper and
further detailed in Appendix D.3. The implementation de-
tails of 360-IGEV-Stereo are similar to IGEV-Stereo, with
some small modifications.

We convert the disparity, given in degree, to pixels to be
able to warp the top image appropriately for constructing
the cost volume:

dpix =
960 px × ddeg

180◦
. (17)

Hereby, 960 px is the height of the downsampled image be-
fore cropping.

During training 360-IGEV-Stereo had some instabilities.
To mitigate this issue, we clamp the disparity ddeg in each
step to ddeg ∈ [ddeg, min, ddeg, max]. According to the statistics
of the dataset, the minimum and maximum disparity are set
to ddeg, min = 0.048◦ and ddeg, max = 23◦.

To enable a better understanding of the context, we use
the the full image size of 512 x 1920 for training. Except of
a common photometric data augmentation, we do not apply
any data augmentations.

All weights that have not been modified are initialized
with the original IGEV-Stereo weights created with pre-
training on Sceneflow by the authors. The model is trained
with a batch size of 4 for 20 epochs which corresponds to
around 130k steps. Furthermore, the maximum disparity
for constructing the cost volumes is set to 128 which is the
smallest number that is divisible by 32 and larger than the
maximum disparity in pixels.

D.3. 360-IGEV-Stereo Architecture
To construct 360-IGEV-Stereo, we introduce three key en-
hancements to the IGEV-Stereo architecture.

3https://github.com/albert100121/360SD-Net
4https://github.com/gangweiX/IGEV/tree/main/

IGEV-Stereo

Layer Channels Scaling Input
in out

1. Image feature extractor

img conv 3 32 1/2 top / bottom image
img bottleneck1 32 16 1 img conv
img bottleneck2 16 24 1/2 img bottleneck1
img bottleneck3 24 32 1/2 img bottleneck2
img bottleneck4 32 96 1/2 img bottleneck3
img bottleneck5 96 160 1/2 img bottleneck4

2. Feature concatenation

concat img pm (160+32) 192 1 (img bottleneck4, pm bottleneck4)
concat conv 192 160 1 concat img pm

3. Upsampling layers

up bottleneck6 160 192 2 (concat conv, img bottleneck4)
up bottleneck7 192 64 2 (up bottleneck6, img bottleneck3)
up bottleneck8 64 48 2 (up bottleneck7, img bottleneck2)
final conv3x3 48 48 1 up bottleneck8

4. Stem part

stem2pre 3 32 1/2 top / bottom image
stemconcat (32+32) 64 1 (stem2pre, pm coord2)
stem2post 64 32 1 stemconcat
stem4 32 48 1/2 stem2post

Table 9. Architecture of 360-IGEV-Stereo’s feature network.
The steps 1 to 3 are part of the main feature network whose fea-
tures at the scales 1/4, 1/8, 1/16, and 1/32 are used to build the
CGEV. Its features are concatenated with the encoded polar map
at its bottleneck in 1/32 of the original image size. The orange part
in the bottom of the feature network in Fig. 4 is called stem. At
scale 1/4 it is used for the construction of the CGEV and at scale
1/2 the feature map obtained for the bottom image is used for spa-
tial upsampling. The encoded polar map is concatenated with stem
at 1/2 of the original image size.

Layer Channels Scaling Input
in out

1. Image feature extractor

img conv7x7 3 64 1 bottom image
img resblock1 64 64 1 img conv7x7
img resblock2 64 96 1/2 img resblock1
img resblock3 96 128 1/2 img resblock2

2. Feature concatenation

concat img pm (128+32) 160 1 (img resblock3, pm coord4)
concat conv 160 128 1 concat img pm

3. Multi-scale outputs

output04 conv 128 128 1 concat conv
output04 resblock4 128 128 1/2 concat conv
output08 conv 128 128 1 output04 resblock4
output08 resblock5 128 128 1/2 output04 resblock4
output16 conv 128 128 1 output04 resblock5

Table 10. Architecture of 360-IGEV-Stereo’s context network.
The features of the image are concatenated with the encoded polar
map at 1/4 of the original image size. Context features at the scales
1/4, 1/8, and 1/16 are used by the ConvGRU block.

Firstly, the polar map is added as an additional input to
the network. It has the same size as the input image and
consists of repeated columns within a range of [48◦, 144◦],
corresponding to the vertical field of view of the input im-
age. Its encoder is shared between feature and context net-
work. The encoder contains convolutional layers with a
stride of 2 to decrease the polar map size gradually. For
fusing the encoded polar map with the feature we concate-
nate the features at the lowest possible resolution before

https://github.com/albert100121/360SD-Net
https://github.com/gangweiX/IGEV/tree/main/IGEV-Stereo
https://github.com/gangweiX/IGEV/tree/main/IGEV-Stereo


Layer Channels Scaling Input
in out

pm coord2 1 32 1/2 polar map
pm coord4 32 32 1/2 pm coord2
pm coord8 32 32 1/2 pm coord4
pm coord16 32 32 1/2 pm coord8
pm coord32 32 32 1/2 pm coord16

Table 11. Architecture of 360-IGEV-Stereo’s polar encoder.
The polar encoder’s at 1/2, 1/4, and 1/32 of the original polar map
size are used. All layers are convolutional with a kernel size of 3,
a stride of 2. After each layer batch normalization and the Leaky
ReLU activation function are applied.

producing multi-scale outputs, followed by a convolution
that recreates the number of channels. The overall architec-
ture is outlined more in detail in Tab. 9, Tab. 10 and Tab. 11.

Secondly, we build the cost volume based on vertical in-
stead of horizontal warping. This means that in the con-
struction of the geometry encoding volume the group-wise
correlation volume is calculated by shifting the top image
about the corresponding disparity index vertically. Simi-
larly, for building the all-pairs correlation volume the top
image is warped downwards according to the disparity in-
dex.

Lastly, we apply circular padding at evaluation time. As-
suming the original image I has height H and width W , the
value of the pixel with the row index i and the column in-
dex j of the circular padded image Icp can be calculated in
dependence of the amount of padding P with the following
formula:

Icp
i,j =


Ii,j+W−P if 0 ≤ j < P

Ii,j−P if P ≤ j < W + P

Ii,j−W−P if W + P ≤ j < W + 2P

(18)

Circular padding is omitted during training to reduce com-
putations and enable larger batch sizes.

E. Additional Results

In this section, we further study the impact of pretrained
weight initialization and cross-dataset generalization.

E.1. Effect of Pretrained Weights
In addition to the ablative studies detailed in the main pa-
per, we report in Tab. 13 a detailed comparison of each
model performances using randomly initialization versus
fine-tuning from pretrained weights.

Both 360-IGEV-Stereo and IGEV-Stereo show signifi-
cant improvements when initialized with Scene Flow pre-
trained weights, outperforming their randomly initialized

counterparts across all depth and disparity metrics. For ex-
ample, 360-IGEV-Stereo achieves a reduced depth MAE
of 1.77m and RMSE of 4.36m, demonstrating the ef-
fectiveness of leveraging models trained on standard im-
ages like Scene Flow for omnidirectional image train-
ing. Surprisingly, this pattern does not hold for PSM-
Net, where the model initialized randomly achieves bet-
ter performance than using Scene Flow pretrained weights.
In contrast, 360SD-Net shows minimal improvement with
Stereo-MP3D pretraining, despite the dataset being omni-
directional. This discrepancy could be attributed to Stereo-
MP3D’s limitation to indoor scenes, whereas HELVIPAD
has a broader range of scenes.

E.2. Left-Right Consistency
In addition to the main results available in Tab. 2, we pro-
vide a more detailed analysis of Left-Right Consistency Er-
ror (LRCE) across different scene types in Appendix E.2.

Model All Indoor Outdoor Night Outdoor

PSMNet 1.80 0.93 1.31 1.16
360SD-Net 0.90 0.52 1.02 1.01
IGEV-Stereo 1.20 0.79 1.21 1.55
360-IGEV-Stereo 0.38 0.17 0.38 0.46

Table 12. Depth-LRCE with augmented ground-truth across
different scene types. Results are reported in meters.

The results indicate that left-right consistency is more
challenging to maintain in outdoor scenes, with the high-
est errors observed in night outdoor conditions due to low-
light environments and reduced texture details. In con-
trast, indoor scenes achieve the lowest LRCE, likely due
to more structured environments with well-defined depth
boundaries and fewer extreme lighting variations.

E.3. Cross-Dataset Generalization
We study the cross-dataset generalization of 360SD-Net
by first training the model on the HELVIPAD dataset
and then fine-tuning it on Stereo-MP3D and Stereo-SF3D
datasets [34] , which share a similar top-bottom camera
configuration. Results are available in Tab. 14. Compared
to a baseline trained from random initialization on Stereo-
MP3D, fine-tuning on HELVIPAD significantly improved all
depth and disparity metrics. On Stereo-MP3D, fine-tuning
on HELVIPAD reduces depth MAE from 0.087m (random
initialization) to 0.072m, along with consistent improve-
ments in all disparity metrics. A similar trend is observed
on Stereo-SF3D, where HELVIPAD pretraining improves
depth MAE from 0.029m to 0.027m and disparity MAE
from 0.105° to 0.099°, outperforming models pretrained on
Stereo-MP3D. Note that although we used the authors’ pro-
vided code5 and the reported hyperparameters, our repro-

5https://github.com/albert100121/360SD-Net

https://github.com/albert100121/360SD-Net


duced results differ from those reported in the original pa-
per. We present our outcomes for a fair comparison.

Fine-tuning on HELVIPAD offers a broader diversity of
scenes, particularly outdoor environments. These results
suggest that HELVIPAD not only captures a wider range
of scenarios but also provides robust features that enhance
generalization to datasets with overlapping characteristics.

Real-world representation. While collected on a uni-
versity campus, the dataset captures many common urban
environments, such as parking lots, roads, underpasses,
pedestrian squares, footpaths, corridors and crowded halls.
To further demonstrate transferability, we present below the
qualitative result of 360-IGEV-Stereo on a real-world image
without labels from the 360SD-Net paper:

Figure 19. Qualitative result of 360-IGEV-Stereo on a real-
world image. The top image shows the bottom image of the input,
while the bottom image displays the predicted disparity map.

Trained solely on HELVIPAD, the model demonstrates
zero-shot capabilities in this environment.



Method Initialization Disparity (°) Depth (m)

MAE ↓ RMSE ↓ MARE ↓ MAE ↓ RMSE ↓ MARE ↓

PSMNet [6] random 0.29 0.50 0.25 2.51 5.67 0.18
Scene Flow 0.33 0.54 0.29 2.78 6.17 0.19

360SD-Net [34] random 0.22 0.42 0.19 2.12 5.08 0.18
Stereo-MP3D 0.23 0.44 0.20 2.31 5.41 0.16

IGEV-Stereo [38] random 0.23 0.44 0.18 2.10 5.30 0.17
Scene Flow 0.23 0.42 0.17 1.86 4.47 0.15

360-IGEV-Stereo random 0.20 0.40 0.16 1.91 4.60 0.14
Scene Flow 0.19 0.40 0.15 1.72 4.30 0.13

Table 13. Comparison of model performance with random initialization vs. fine-tuned from pretrained weights.

Dataset Initialization Disparity (°) Depth (m)

MAE ↓ RMSE ↓ MARE ↓ MAE ↓ RMSE ↓ MARE ↓

Stereo-MP3D reported [34] 0.145 0.693 – 0.059 0.218 –
random 0.148 0.994 0.074 0.087 0.294 0.050
HELVIPAD 0.129 0.930 0.063 0.072 0.252 0.039

Stereo-SF3D

reported [34] 0.103 0.369 – 0.003 0.091 –
random 0.105 0.468 0.020 0.029 0.071 0.016
Stereo-MP3D 0.121 0.505 0.023 0.035 0.079 0.019
HELVIPAD 0.099 0.469 0.018 0.027 0.069 0.015

Table 14. Cross-dataset generalization results by fine-tuning 360SD-Net [34].
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