Appendix of “ChainHOI: Joint-based Kinematic Chain Modeling for
Human-Object Interaction Generation”

Al. Summary

In the appendix, we first introduce more details of our
method and experiments in Sec. A2. Then, we present the
full experimental results using additional metrics and ana-
lyze these results in Sec. A3. Moreover, we conduct ex-
tensive ablation studies to evaluate the impact of each de-
sign choice and hyperparameter in Sec. A4 and Sec. A6.
In Sec. A5, we introduce failure cases generated by our
method. Finally, we discuss the limitations of our Chain-
HOI in Sec. A7.

A2. More Details of Our Method and Experi-
ments

A2.1. Implementation Details

T is set to 1000 as the maximum diffusion step, and the
variances ; vary from 0.0001 to 0.02. We use DDIM [22]
with 50 time steps during sampling. The number of blocks
Nissetto6. D, and D; are set to 64 and 256, respectively.
We downsample the number of object points to 16 using
PointNet [19]. Our ChainHOI is optimized using AdamW
[15] on two RTX 3090 Ti GPUs in parallel with a learning
rate of le-4 and a batch size of 32. The model is trained for
200 epochs. During testing, the guidance scale is set to 2.
A1 and )Xo are set to 2 and 1, respectively.

A2.2. Details of Our Loss

We note that non-watertight objects do not affect the com-
putation of G() during training because G() computes the
square of the minimum absolute distance from the joint to
all triangles.

Why is the G() calculated from human joints to the
ground truth object rather than the generated object?
Because the object consists of a large number of triangular
facets, using the generated object information results in a
3.6-fold increase in GPU memory usage (1.8 GB vs. 6.6 GB
when the batch size is 1). We evaluate the performance us-
ing generated objects, reducing the batch size to one-fourth
of the original due to GPU memory constraints. Tab. Al
shows that performance was inferior compared to using GT
objects.

FID] R-Topl] OCD] PSJ|
genobj. | 0.098  0.437  0.089 0.081
GTobj. | 0.095 0435  0.091 0.081

Table Al. Comparisons of using the generated object or the
ground truth object to calculate the distance.

A2.3. Details of Our OCD

LLM-assisted label generation and evaluation have been ex-
tensively utilized in recent studies [2, 4, 12, 26]. Specifi-
cally, we first filter grouping candidates by object category
and contacting body parts (avg. 5.1 candidates on average
in each group). Next, we utilize ChatGPT-40 to determine
which instructions are semantically identical by evaluating
action intent and the specific human body part involved in
the contact. Consequently, this task is relatively straightfor-
ward for ChatGPT-40. Table A 12 shows the prompt used to
group semantically identical HOISs.

We also assess the quality of the labeling process through
two methods: manual evaluation and LLM-assisted evalua-
tion. First, we review a 10% sample of the labels, achieving
an accuracy rate of 94%. Second, following the approach
in [12], we employ ChatGPT-4o to evaluate all labels to en-
sure consistency within each instruction group, resulting in
a mean consistency score of 0.906 (on a scale from O to 1).
Table A 13 shows the prompt used to evaluate group labels
to ensure consistency within each instruction group.

A2.4. Details of Our User Study

We initiate the evaluation by randomly selecting 20 test
prompts from the BEHAVE dataset. Subsequently, for each
of these 20 prompts, we instruct each method to generate
5 samples. This process yields a corpus of 100 samples,
which are then used in a pairwise user study. The evalua-
tion score is calculated as the ratio of votes received to the
total votes cast.

A2.5. Details of Our Evaluator

As mentioned in our main manuscript, we adopt the metrics
from T2M [6] to evaluate motion generation quality. How-
ever, computing these metrics requires a pre-trained model
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Figure Al. Overview of Our Evaluator. Inspired by CLIP [20],
our evaluator incorporates a motion branch and a text branch. The
motion branch takes motion sequences and a CLS token as inputs.
The text branch takes texts and a CLS tokens as inputs. Then
the output CLS tokens of two branches are passed into a linear
projection and then are used to calculate the contrastive learning
loss.

to extract features from both motion sequences and text de-
scriptions. Since there is a domain gap between text-driven
motion generation and HOI generation, and because HOI-
Diff does not provide such a model, we trained a new fea-
ture extractor for evaluation.

Inspired by CLIP [20], we design and train our evaluator
using a contrastive learning method. As shown in Figure
Al, our evaluator consists of a motion branch and a text
branch. The motion branch takes motion sequences and a
CLS token as inputs, while the text branch takes texts and a
CLS token as inputs. The output CLS tokens from both
branches are then passed through a linear projection and
used to calculate the contrastive learning loss.

Implementation Details. Following previous works [3, 11,
16, 23], our evaluator is used to assess the quality of human
motion only (excluding object motion). During training, hu-
man motions are represented using the HumanML3D rep-
resentation [6] m € RE*P where D = 263. The motion
branch consists of 8 Transformer Decoders [25], while the
text branch uses the pretrained ROBERTa [13]. The dimen-
sionality of the motion branch is 384. The output dimen-
sions of the linear projections for both branches are 512.
Our evaluator is optimized using the Adam optimizer [9]
with a learning rate of 1 x 10~* on an RTX 3090 Ti GPU.
The batch size and number of training epochs are set to 64
and 200, respectively. Specifically, our evaluator is trained
in two stages. In the first 8 epochs, the text branch, ex-
cept for the linear projection, is fixed, and only the motion
branch is trained. Then, all branches are trained together.

A2.6. Details of Compared Baselines

Apart from the methods compared in our main manuscript,
we have included a modified version of CHOIS [11] for
comparison, as it recently released its source code. Due
to space constraints, we provide a brief description of these
modifications in the main manuscript. Below, we provide a
detailed description of the modified methods:

* CHOIS* [11]: Since CHOIS aims to generate HOI se-
quences conditioned on both text descriptions and object
waypoints, we removed the object waypoints from the
CHOIS model and modified the input and output dimen-
sions. Note that our HOI representation is easily compat-
ible with the one used in CHOIS.

* InterDiff [27]: InterDiff is designed for HOI prediction
conditioned on past HOI sequences. To adapt it to text-
driven HOI generation, we replaced the past HOI se-
quences with text descriptions. Specifically, we modified
the feature dimensions and utilized the CLIP text encoder
to extract text features.

o MDM/inetuned [94]. As MDM is a text-driven mo-
tion generation method, we directly fine-tuned the MDM
model pretrained on the HumanML3D dataset [6] to gen-
erate human motion only. Note that MDM/¢tuned does
not generate object motion, and metrics for evaluating in-
teraction quality are not included.

* MDM* [24]: To adapt MDM to the text-driven HOI gen-
eration task, we concatenated object motion (6-DoF) and
human motion as the model’s inputs and outputs. This
modification allows MDM* to generate HOI sequences.

e PriorMDM* [21]: PriorMDM introduces a ComMDM
block for two-person motion generation. To adapt it to
the text-driven HOI generation task, we replaced one of
the two persons with the object and modified the input
and output dimensions accordingly.

A3. Experiments Using More Metrics

In this section, we present comprehensive results evaluated

using additional metrics to demonstrate the effectiveness of

our ChainHOI. In addition to the metrics introduced in our
manuscript, we utilize the following metrics to assess gen-
eration quality:

e MultiModal Distance (MM. Dist.): MM. Dist. calcu-
lates the average distance between the motion features of
each generated motion and the text features of their cor-
responding descriptions in the test set. Note that the fea-
tures for both motion and text are extracted by our evalu-
ator.

* Diversity (Div.): Div. measures the variance in the gener-
ated motions. We randomly sample two equal-sized sub-
sets from all motions and then compute the average dis-
tance between these subsets.

* Contact Distance (CD): We also report the original con-
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Table A2. Quantitative evaluation of the BEHAVE [1] and OMOMO [10] test sets. We repeated evaluation 20 times to calculate the
average results with a 95% confidence interval (denoted by +). The best result is in bold, and the second best is underlined. Affordance-
guided Interaction Correction (AIC) [16] is a post-processing method.

tact distance used in previous HOI generation methods.
In contrast to our optimal contact distance, the original
contact distance uses contact labels from a single ground-
truth label.

The complete experimental results are presented in
Tab. A2. These findings demonstrate that our ChainHOI
performs well on the newly introduced metrics, namely MM
Dist., Div., and CD. For the metrics OCD and CD, differ-
ent models exhibit similar trends. The gap between OCD
and CD indicates that using a single ground-truth contact
label to calculate contact distance in a generative model is
inappropriate. In contrast, our OCD provides a more accu-
rate evaluation of contact distance. On the other hand, we
note that it is not surprising that some models’ R-Precisions
outperform those of real motions, as such phenomena have
been reported in many works, such as [7, 17, 18, 23].

Ad4. More Ablation Studies

In this section, we conduct extensive ablation studies to
evaluate the effectiveness of each component and design
choice.

A4.1. Impact of the Design of HOI Graph

To evaluate the effectiveness of our HOI graph, we compare

our HOI graph with the following designs:

* Discrete Graph: The HOI graph is a discrete graph with
no edge connections between any two joints.

FID|{ R-Toplt OCD] PS|
Discrete Graph ~ 0.138 0.457 0.121  0.084
Complete Graph  0.154 0.443 0.106  0.086
Our HOI Graph  0.095 0.435 0.091 0.081

Table A3. Evaluations of different HOI graph designs on the
BEHAVE dataset.

FID|{ R-Toplt OCD] PS|
Design A 0.179  0.450 0.113  0.090
Design B 0.095 0.428 0.103  0.084
Our Kinetic Chain  0.095 0.435 0.091 0.081

Table A4. Evaluations of different kinetic chain designs on the
BEHAVE dataset.

* Complete Graph: The HOI graph is a complete graph
with edges between every pair of joints.

The experimental results are shown in Tab. A3. The re-
sults indicate that, compared to the discrete graph and com-
plete graph, our HOI graph achieves the best performance
across all metrics except for R-Topl. Although the discrete
graph and complete graph perform better on R-Topl, the
FID of both designs is significantly lower than that of our
HOI graph.



A1 X2 FID] R-Toplt OCD] PS] FID{ R-Toplt OCD] PS|
0 1 0.126 0.449 0.094  0.085 Shared Decoder 0.174 0.447 0.091 0.085
05 1 0.130 0.443 0.108 0.084 Independent Decoders  0.095 0.435 0.091 0.081
1 1 0142 0.466 0.095 0.084
1.5 1 0.09 0.447 0.089 0.083 Table A6. Evaluations of the design of Semantic-consistent
2 1 0.095 0.435 0.091 0.081 Module and Context-aware Decoder on the BEHAVE dataset.
25 1  0.175 0414 0.089 0.082
0 0.126 0.482 0.092 0.087 #Points FID, R-Toplt OCD] PSJ
8 0.159 0.364 0.083 0.091

1 0.09  0.435 0.091 0.081

2
2 05 0.109 0.436 0.080 0.081
2
2 15 0.142 0.432 0.078  0.089

Table AS. Impact of the training loss. The gray line represents
the configuration used in our ChainHOI model.

A4.2. Impact of the Design of Kinetic Chains

To evaluate the effectiveness of our kinetic chain design, we
propose two alternative configurations for both the internal
kinetic chains and the human-object chain:

* Design A: This design modifies the internal kinetic chains
by reducing the number from five to two. The two remain-
ing kinetic chains represent the upper and lower body,
respectively. Note that the human-object chain remains
unchanged in this design.

¢ Design B: This design alters the human-object chain by
replacing it with a fully connected graph. Specifically,
every human joint is connected to the object node, rather
than only the potential interaction joints. The internal ki-
netic chains remain the same as in our original design.

As shown in Tab. A4, Design A achieves higher perfor-
mance on R-Topl. However, the FID, OCD, and PS metrics
all decrease significantly compared to our original design.

In contrast, Design B, which connects the object node to

all human joints, outperforms Design A in both FID and

interaction-related metrics. Overall, the design used in our

ChainHOI achieves better FID, OCD, and PS while main-

taining good R-Top1 performance.

A4.3. Impact of the Training Loss

As mentioned in Section 3.5 of our main manuscript, we
propose two loss functions to improve the quality of human-
object interactions. To analyze the impact of our proposed
losses, we evaluate the performance by varying the weight
of each loss.

The evaluation results are shown in Tab. A5. As illus-
trated in the upper part of Tab. A5, constraining the dis-
tance between the predicted human joints and the ground-
truth object mesh significantly improves FID and PS, and
slightly improves the performance on OCD. In the lower
part of Tab. A5, explicitly constraining the object’s 6-DoF
significantly enhances the performance on OCD and PS.

16 0.095 0.435 0.091 0.081
32 0.109 0.446 0.095 0.087
64 0.124 0.424 0.094 0.081

Table A7. Effect of the number of points sampled by PointNet.
The gray line represents the configuration used in our ChainHOI.

A4.4. Impact of the Design of Semantic-consistent
Module and Context-aware Decoder

As shown in Figure 4 of our main manuscript, both the
Semantic-consistent Module and the Context-aware De-
coder adopt two Transformer decoders to separately obtain
information from object geometry and text (denoted as In-
dependent Decoders). To demonstrate the necessity of using
two different Transformer decoders, we evaluate the per-
formance when using a single decoder to obtain informa-
tion from both object geometry and text simultaneously (de-
noted as Shared Decoder). Specifically, the object geometry
tokens and text tokens are concatenated and then input into
a Transformer decoder. The experimental results are shown
in Tab. A6. When using the Shared Decoder, the FID drops
significantly, demonstrating the necessity of using Indepen-
dent Decoders.

A4.5. Impact of PointNet

Our ChainHOI adopts PointNet [19] to extract features from
object geometry. To evaluate the impact of the number
of points sampled by PointNet, we conducted experiments
with varying point counts. The experimental results are
shown in Tab. A7. The results indicate that using 8 points
results in the worst performance on FID, R-Topl, and PS,
while performing well on OCD. Furthermore, we find that
increasing the number of points does not lead to higher per-
formance. Therefore, we use 16 points in our ChainHOL.

A4.6. Impact of Inference Steps

We also evaluate the impact of the number of inference
steps. Note that we use DDIM [22] to generate HOI se-
quences during inference. The experimental results are
shown in Tab. A8. As the number of sampling steps in-
creases, the model’s performance also improves. However,
considering the inference time cost, we set the number of



Inference
Steps AIT FID] R-Toplt OCD| PS|

20 0.28s 0.101 0.434 0.093 0.085
50 0.61s  0.095 0.435 0.091 0.081
100 1.41s  0.093 0.436 0.090 0.081
200 292s 0.093  0.438 0.089  0.080

Table A8. Impact of the number of inference steps. The gray
line represents the configuration used in our ChainHOI model. The
Average Inference Time (AIT) is the mean over 100 samples on an
RTX 3090Ti.

G‘;‘f;l‘;ce FID, R-Topltf OCD] PS|

1 0.102 0344  0.100 0.086
0.095 0435  0.091 0.081
0.095  0.460  0.094 0.083
0.094 0482  0.102 0.085
0.094 0498  0.114 0.084

WD Ww N

Table A9. Impact of the guidance scale. The gray line represents
the configuration used in our ChainHOI model.

#Blocks FID] R-Toplt OCDJ| PS|
2 0.207 0.248 0.171  0.091
4 0.141 0.342 0.104  0.088
6 0.095 0.435 0.091 0.081
8 0.135 0.423 0.088 0.083

Table A10. Impact of the number of blocks. The gray line rep-
resents the configuration used in our ChainHOI model.

inference steps to 50 to balance generation quality and in-
ference efficiency.

A4.7. Impact of Guidance Scale

We conduct experiments to evaluate the impact of the guid-
ance scale during generation. We adopt the classifier-free
method [8] to achieve conditional generation. The evalua-
tion results are presented in Tab. A9. When the guidance
scale is set to 1, the performance on FID, OCD, and PS is
satisfactory, likely because the model utilizes the input ob-
ject geometry to guide HOI generation. However, without
text guidance, the generated HOIs may not correspond to
the provided text, leading to a lower R-Topl score. Con-
versely, as the guidance scale increases, the performance
on FID and R-Topl improves, while the quality of human-
object interactions declines, since the quality of human-
object interactions does not depend on text guidance.

FID] R-Toplt OCD| PSJ

HOIDiff 0.514  0.097  0.281 0.023
CHOIS* 0.368 0.107  0.269 0.026
Our  0.154 0.186 0238 0.022

Table A11. Generalization Performance Evaluation. All meth-
ods are trained on the OMOMO dataset and evaluated on the 3D-
FUTURE dataset.

A4.8. Impact of the Number of Blocks

Furthermore, we evaluate the impact of the number of
blocks in our ChainHOI model. As shown in Tab. A10,
both increasing and decreasing the number of blocks lead
to a performance drop. Therefore, the ChainHOI model us-
ing six blocks is our final model.

A4.9. Generalization Performance Evaluation

To evaluate ChainHOI's generalization performance on un-
seen objects, we tested our model, pre-trained on the
OMOMO dataset, on the 3D-FUTURE dataset [5] using the
protocol established by CHOIS [11]. Results in Table A1l
reveal that although a performance drop is observed for
all methods, our approach maintains superior performance
compared to others.

AS. Failure Case Analysis

As shown in Fig. A2, we present two typical failure cases

encountered by our method:

* Issues with Finger-Object Clipping: Subfigures (a) and
(b) illustrate problems related to clipping between the fin-
gers and objects. Since the input data is represented using
the SMPL model [14], which does not include finger joint
information, our ChainHOI is unable to accurately model
the fingers, resulting in clipping between the fingers and
objects.

* Large Contact Distances: Subfigure (c) shows that the
contact distance may be excessively large when interact-
ing with certain complex objects. For instance, with ob-
jects such as chairs, our model struggles to learn the cor-
rect contact points and appropriate contact distances.

AG6. Visualization of Attention Scores in Our
Kinematic-aware Decoder.

As shown in Fig. A3, we present two examples to demon-
strate that our ChainHOI can adaptively focus on the joints
interacting with the target object. For other potential inter-
action joints that have low relevance to the target object,
lower attention scores are assigned. The results show that
our method effectively captures the relationship between the
target object and the precise interaction joints.
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Figure A2. Visualization of Failure Cases. We present two typical failure cases encountered by our method. Issues with Human-Object
Clipping: Subfigures (a) and (b) illustrate problems related to clipping between the fingers and objects. Since the input data is represented
using the SMPL model [14], which does not include finger joint information, our ChainHOI is unable to accurately model the fingers,
resulting in clipping between the hands and objects. Large Contact Distances: Subfigure (c) demonstrates that the contact distance may be
excessively large when interacting with certain complex objects. For instance, with objects such as chairs, our model struggles to learn the
correct contact points and appropriate contact distances.

A person is raising a chairwood with
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Figure A3. Visualization of attention scores in our Kinematic-aware Decoder. We present two examples to demonstrate that our
ChainHOI can adaptively focus on the joints interacting with the target object. For other potential interaction joints that have low relevance
to the target object, lower attention scores are assigned. The results show that our method effectively captures the relationship between the

target object and the precise interaction joints.

A7. Limitations

Although our ChainHOI is capable of generating realistic
and coherent human-object interactions, it still has certain
limitations. First, due to the SMPL human representation
used in the BEHAVE [1] and OMOMO [10] datasets, our
ChainHOI is unable to accurately model the fingers and pre-
vent clipping between the fingers and objects. Second, as
analyzed in Sec. A5, our ChainHOI struggles to learn the
correct contact points and appropriate contact distances for
complex objects. Furthermore, due to the physical geome-
try information extraction method adopted in our approach,
ChainHOI is unable to handle interactions between humans
and non-rigid objects.
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“System Prompt:” You are an assistant of understanding and grouping human motion instructions. Given several groups
of instructions that describe interactions between humans and objects, the instructions in each group represent semantically
consistent actions. Your task is to identify which groups represent semantically consistent actions. Please provide your output

in the following format: [[1, 2], [3]], which represents group 1 and 2 are consistent.

Here is an example:
H#H#Inputi:

Group 1:
The person is gripping the yogamat from the front.

The person has a firm grasp on the yogamat from the front.

The person is clutching the yogamat from the front.
Group 2:

The person is clutching a yogamat against his body with his right hand.
The individual is clasping a yogamat near his body with his right hand.
The person is gripping a yogamat close to his body with his right hand.

Group 3:
A person is gripping a yogamat in front.
A person is carrying a yogamat in front.
A person is clutching a yogamat in front.
Group 4:

The individual is clutching a yogamat with his left hand, keeping it firmly against his body.
A person is grasping onto a yogamat, holding it tightly against his body with his left hand.
Someone holds a yogamat close to his body, with his left hand gripping onto it tightly.

Group 5:
The person is grasping the yogamat from the front.
A person has ahold of the yogamat from the front.

The person has taken possession of the yogamat from the front.
### Output ###:

(1, 3, 51, [2]1, [4]]

(5]

(6]

(7]

(8]

9]

Table A12. The prompt used to group semantically identical HOIs.
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