
Supplementary Materials for
DeepLA-Net: Very Deep Local Aggregation Networks for Point Cloud Analysis

Overview
This supplementary material is organized as follows:

• Section A provides the details of the network architecture.

• Section B presents the experimental settings.

• Section C provides additional discussion including.

• Section D shows detailed and additional experimentation
results for semantic segmentation.

• Section E introduces more related works including.

• Section F shows outlook for the future work.

A. Details of the Network Architecture
We provide detailed network architectures for segmenta-
tion and classification. As illustrated in Figure 1, the en-
coder comprises four encoding stages, and each encoding
stage consists of a down-sampling operation and multiple
ResLFE blocks, with the output being supervised by HDS
strategy. In the segmentation branch, DeepLA-Net follows
an encoder-decoder architecture. Each decoding stage com-
prises an up-sampling operation and a multi-layer percep-
tron. In the classification branch, global average pooling
is applied to the output of the encoder to obtain the global
representation. Finally, fully-connected layers with a soft-
max are used to predict the classification scores, where the
segmentation/classification results are dictated by the label
with the highest score.

B. Experimental Settings
B.1. Evaluation Metrics
To quantitatively analyze the performance of the pro-
posed architecture, overall accuracy (OA), mean Accuracy
(mAcc), per-class intersection over union (IoUs), mean IoU
(mIoU), are used as evaluation metrics as follows:

OA =

∑n
i=1 TPi

N
(1)

mAcc =

∑n
i=1 Acci
n

(2)

IoUi =
TPi

TPi + FPi + FNi
(3)

mIoU =

∑n
i=1 IoUi

n
(4)

where TP denotes the number of true positive samples, FP
denotes the number of false positive samples, FN denotes
the number of false negative samples, i denotes the ith se-
mantic class, n denotes the number of total semantic classes
and N denotes the number of total points.

B.2. Implementation Details
During the training process, we use the hybrid deep super-
vision strategy with label smoothing to optimize our mod-
els . We adopt the AdamW optimizer [15] with an initial
learning rate of 0.004, and a scheduler with weight decay
of 10−4 using cosine learning rate decay. For data augmen-
tation, we use random scaling, feature dropping, and color
auto contrasting whenever applicable, following [28]. For
semantic segmentation, we input a fixed number of 30,000
points per batch, with a batch size of 8, and train for 100
epochs. For object classification, we input a fixed number
of 1,024 points per batch, with a batch size of 32, and train
for 250 epochs. For part segmentation, we input a fixed
number of 2,048 points per batch, with a batch size of 32,
and train for 250 epochs. In the down-sampling process,
for object classification and part segmentation, we employ
farthest point sampling, retaining only half of the remaining
points at each stage. For semantic segmentation, we employ
grid sampling with linear time complexity. The initial grid
size is set to 0.04m for S3DIS and 0.02m for ScanNet v2,
and doubled at each stage.

B.3. Dataset Description
For semantic segmentation, we conduct experiments on
S3DIS [1] and ScanNet v2 [6]. The S3DIS comprises 272
rooms from six large-scale indoor areas. Each point is an-
notated with a specific semantic label from 13 classes. The
ScanNet v2 comprises 1,513 room scans reconstructed from
RGB-D frames. The dataset is divided into 1,201 scenes
for training, 312 for validation and 100 for online testing.
Each point is annotated with a specific semantic label from
20 classes. We use mIoU to assess performance on both
datasets: 6-fold cross-validation and Area 5 for S3DIS, and
validation and online test sets for ScanNet v2.

For object classification, we conduct experiments on
ScanObjectNN [37]. The ScanObjectNN contains about
15,000 real scanned objects, each annotated with a seman-
tic label from 15 classes. Due to the existence of back-
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Figure 1. Architecture of the proposed DeepLA-Net for segmentation (top) and classification (bottom). HDS denotes hybrid deep supervi-
sion strategy. Bn denotes the number of blocks in the n-th stage.

Table 1. Ablation results of the bottleneck in ResLFE block in
DeepLA-24 on S3DIS Area5.

Block Ratio mIoU △
(%) (%)

[1:1:3:1] 73.2 -
[1:1:9:1] 72.7 −0.5
[1:1:1:1] 72.5 −0.7
[5:9:5:5] 72.2 −1.0

ground elements, noise, and occlusions, ScanObjectNN
poses significant challenges to the existing point cloud anal-
ysis methods. Following PointMLP [23] and PointNeXt
[28], we conduct experiments on PB T50 RS, the hardest
and most commonly used variant of ScanObjectNN.

For part segmentation, we conduct experiments on
ShapeNetPart [46]. The ShapeNetPart provides part-level
annotation for 3D models, comprising 16,880 models
across 16 distinct shape classes. Each class has 2-6 parts,
amounting to a total of 50 part labels.

C. Additional discussion

C.1. Analysis on ResLFE Block Ratio

In the DeepLA-Net implementation, we set the ResLFE
block ratio in encoder stages of [1:1:3:1]. As shown in
Table 1, we implement different ResLFE block ratio on
DeepLA-24. It is evident that the [1:1:3:1] block ratio we
used achieves the best performance.

C.2. More Visual Comparison of Feature Learning
with Different Network Depths

We present the visualization of the feature similarity matrix
for a specific object class in 3D scenes in Figure 2. From the
visualization results, it is evident that DeepLA-120 demon-
strates clear segmentation boundaries. While DeepLA-24
is effective, it displays some blurred edges and occasional
recognition errors. The simplest DeepLA-6 exhibits a sig-
nificant number of recognition errors. These findings high-
light that the feature similarity matrix of deeper LANets is
more accurate and reliable, revealing more pronounced in
feature differences compared to surrounding objects. This
further demonstrates the enhanced capability of deep net-
works in feature learning, indicating that a reasonable deep-
ening of LANets can significantly improve its ability to cap-
ture local patterns, including edge segmentation and object
recognition.

C.3. Exploring to Deeper Networks

We explore aggressively deeper networks of 240 and 360
blocks. These networks are trained and tested on a sin-
gle Nvidia A6000 GPU with 48GB memory, while keep-
ing other settings consistent with DeepLA-120. As shown
in Figure 3, we observe that DeepLA-240/360 exhibit better
training accuracy, indicating the potential benefits of further
deepening networks. However, the test results of DeepLA-
240/360 are inferior to our DeepLA-120, as detailed in Ta-
ble 2. We attribute this discrepancy to overfitting. Given
that point cloud data can be challenging to acquire and an-
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Figure 2. Visual comparison of feature similarity matrix for a specific object class predicted by DeepLA-Net of different depths. The pink
stars illustrate the selected center points



notate, DeepLA-240/360 may be excessively large, poten-
tially necessitating additional strong regularization and data
augmentation methods for improved outcomes. We plan to
further investigate this in future work.

Table 2. Quantitative comparisons of performance, model com-
plexity, and latency on S3DIS Area5.

Method mIoU Params. FLOPs Thr. Put
(%) (M) (G) (ins./sec.)

DeepLA-120 75.7 30.3 42.7 42
DeepLA-240 74.5 61.2 83.4 23
DeepLA-360 74.2 90.7 134.6 15

Figure 3. Training performance (mIoU score) across training
epochs for deeper DeepLA-Net family on S3DIS (Area 5).

D. Additional Semantic Segmentation Results

D.1. Quantitative Comparisons

In this section, we demonstrate the per-class IoU for S3DIS
Area5 (Table 5), 6-fold (Table 6), and ScanNet v2 test set
(Table 7). Note that, since many methods do not show the
detailed per-class IoU in the semantic segmentation task,
here we only compare the methods that present per-class
IoU in their papers or have released their code and model
weights. For per-class IoU on the S3DIS Area5 and 6-
fold, we observe that DeepLA-120 achieves the best or
sub-best performance in almost all classes. This demon-
strates the potential of DeepLA-Net in local pattern acqui-
sition. Meanwhile, the DeepLA-Net family performs com-
petitively on large-scale objects such as walls, columns,
and windows. We conjecture that DeepLA-Net can obtain
long-range information with further deepening of the net-
work. Similarly, the proposed DeepLA-120 achieves best
or sub-best performance in most classes in per-class IoU on
the ScanNet v2 dataset, underscoring the generalizability of
DeepLA-Net family.

D.2. Qualitative Comparisons
In this section, for a more perceptible comparison between
various methods, we qualitatively assessed the semantic
segmentation outcomes produced by PointVector-XL [7]
(the best model of PointVector family) and our DeepLA-
120 on S3DIS and ScanNet v2 (validation set), as illustrated
in Figure 4 and Figure 5. The red boxes highlight regions
where the segmentation is inaccurate or the boundary is in-
conspicuous in PointVector. For the S3DIS dataset, it is
visually evident that our segmentation of clutter, columns,
boards, and bookcases is superior to that of PointVector.
These classes are challenging since they usually looks very
similar to the wall. For example, the board, column and wall
in the last row of Figure 4 have slightly different geometric
shapes from one another, requiring the network to model
long-range dependencies. For the ScanNet v2 dataset, the
proposed DeepLA-120 can segment the boundaries more
smoothly and accurately.

D.3. Outdoor Datasets
We conducted experiments on the validation sets of the
outdoor datasets SemanticKITTI [2] and nuScenes [3].
Our DeepLA-120 surpasses the previous SOTA point-based
method PTv3 [39] (without additional data for pre-train) in
both mIoU and FPS, while DeepLA-24 achieves real-time
processing (FPS>24). This demonstrates the generalizabil-
ity of our approach. We will show details in the revision,
and will complement more tasks including instance seg-
mentation, and object detection in the extended version.

Table 3. Quantitative comparisons of mIoU and FPS with PTv3
on SemanticKITTI and nuScenes.

Method SemanticKITTI nuScenes FPS
DeepLA-24 66.2 75.1 31

DeepLA-120 71.0 80.8 14
PT v3 (w/o pretrain) 70.8 80.4 10

D.4. Discussion with PTv3 in ScanNet
Unlike our method on ScanNet v2 [6], PTv3 [39] relied
on additional data for pre-train. More importantly, PTv3’s
open-source code reveals the use of extensive test-time
augmentation (TTA), which can significantly boost perfor-
mance. As highlighted in our paper, we did not utilize TTA.
To ensure a fair evaluation, we disabled TTA during the test-
ing phase of PTv3. In this case, PTv3 achieves an mIoU
of only 76.3% on the validation set using their provided
weights, which is lower than our DeepLA-120 (77.6%).

Table 4. Quantitative comparisons with PTv3 on ScanNet v2.
Method ScanNet val

DeepLA-120 77.6
PT v3 (w/o pretrain) 77.5

– w/o TTA 76.3



E. Additional Related Works

E.1. Deep Neural Network Architecture

In the field of 2D image processing, CNNs have been
deepening since the introduction of the pioneering AlexNet
[16], leading to a continuous enhancement in network fit-
ting capability. VGG [32] builds upon AlexNet by stack-
ing small-sized convolution filters, significantly increasing
network depth and substantially improving performance.
Following this, ResNet [12] introduces a simple and effi-
cient skip connection, making it possible to further deepen
the network layers. The great success of ResNet not only
demonstrates the effectiveness of reasonably increasing net-
work depth, but also inspires subsequent researches to
the application and exploration of deep neural architecture
[10, 11, 14, 24, 42, 43].

In the field of 3D point cloud processing, researchers
have largely ’avoided’ exploring network depth, primarily
constrained by the historical philosophy of designing net-
works with more complex local representation. For exam-
ple, ASSANet [27] also uses pre-linear, which is also em-
ployed in our DeepLA-Net, it has an extremely complex
design for the local aggregation module with 118M param-
eters (ASSANet-L only with 8 blocks). In contrast, our ap-
proach avoids such complex and redundant design and thus
the DeepLA-24 only has 6M parameters. Although some
recent works [7, 22, 23, 28, 47] incrementally increased the
depth of their networks (about 10-20 blocks), these designs
essentially aim to increase the number of parameters for
scale-up. In this paper, instead of deliberately following
the prevailing trend in the 3D vision community of explor-
ing sophisticated details, we pursue an empirically powerful
and very deep architecture for point cloud analysis.

E.2. Deep Supervision

Deep supervision is initially proposed to address the is-
sues of gradient vanishing and slow convergence speed dur-
ing the network training [18, 34]. This effective training
technique has also been applied to improve performance
[5, 33, 36, 48, 53]. Lee et al. [18] demonstrate that deep
supervised layers can enhance the learning capabilities of
hidden layers. This encourages intermediate layers to learn
discriminative features, thereby enabling faster convergence
and regularization of the network. Dou et al. [8] intro-
duce a deep supervision paradigm to address optimization
challenges by supervising predictions from feature maps at
varying resolutions. Deep supervision can also be employed
to deepen networks. Wang et al. [38] employ a gradient-
based heuristic approach to enhance gradient propagation
for the training of deeper neural networks. Zhang et al. [51]
employ cross-entropy loss to supervise feature maps at dif-
ferent scales in ResNet-50, ensuring the precise capture of
context and global information in deeper neural networks.

Building on these insights, we have constructed very deep
LANets enhanced with deep supervision, to ensure smooth
gradient backpropagation in deep networks and to mitigate
training optimization challenges.

F. Future Work
Despite the encouraging results, this paper still serves as a
start-up work on very deep LANets. Due to the high costs
associated with acquiring and annotating point cloud data,
the scale of available datasets is significantly smaller com-
pared to 2D images. The limited scale means that deep
networks might be more prone to overfitting when applied
to point cloud data. In future work, we plan to delve into
regularization strategies for DeepLA-Net. Additionally, re-
cent studies are exploring pre-trained models for 3D point
clouds. Integrating DeepLA-Net with 3D pre-training strat-
egy could be a promising direction for future research. Our
work has the potential to contribute significantly to the de-
velopment of 3D foundation models.
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Table 5. Quantitative comparisons with the state-of-the-art methods on S3DIS Area5. Bold indicates the best result, underline indicates
the best result excluding ours. We only report methods which have demonstrated per-class IoU in their papers.

Method OA mIoU ceil. floor wall beam col. wind. door table chair sofa book. board clut.

PointNet [25] - 49.0 88.8 97.3 69.8 0.0 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2
PointCNN [20] 85.9 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
KPConv [35] - 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9
PointASNL [44] 87.7 62.6 94.3 98.4 79.1 0.0 26.7 55.2 66.2 83.3 86.8 47.6 68.3 56.4 52.1
RandLA-Net [13] 87.2 62.5 92.1 97.3 80.9 0.0 21.4 61.4 37.4 78.3 87.1 65.8 70.4 67.7 52.2
Point Trans. [52] 90.8 70.4 94.0 98.5 86.3 0.0 38.0 63.4 74.3 89.1 82.4 74.3 80.2 76.0 59.3
GSLCN [21] 90.5 68.1 94.3 98.5 82.9 0.0 20.6 59.4 69.8 83.1 91.4 76.9 75.4 72.5 60.7
PointNeXt [28] 90.6 70.5 94.2 98.5 84.4 0.0 37.7 59.3 74.0 83.1 91.6 77.4 77.2 78.8 60.6
Stra. Trans. [17] 91.5 72.0 96.2 98.7 85.6 0.0 46.1 60.0 76.8 92.6 84.5 77.8 75.2 78.1 64.0
PointVector [7] 91.6 72.6 95.6 98.6 85.9 0.0 40.1 61.9 76.4 84.9 92.4 80.9 78.5 84.4 64.6
PointMeta [22] 91.3 72.2 95.4 98.6 85.0 0.0 44.1 61.2 79.0 83.7 92.0 80.8 77.8 78.4 63.2
(Ours) DeepLA-24 91.6 73.2 94.6 98.3 86.9 0.0 48.4 65.5 79.7 88.0 91.1 78.9 77.4 78.9 64.2
(Ours) DeepLA-60 92.0 74.8 95.9 98.6 87.7 0.0 50.2 67.5 86.0 90.5 91.8 79.1 78.4 80.3 65.2
(Ours) DeepLA-120 92.6 75.7 96.4 98.9 88.5 0.0 53.3 71.4 82.7 92.1 92.2 78.0 82.0 81.5 66.9

Table 6. Quantitative comparisons with the state-of-the-art methods on S3DIS (6-fold). Bold indicates the best result, underline indicates
the best result excluding ours. We only report methods which have demonstrated per-class IoU in their papers.

Method OA mIoU ceil. floor wall beam col. wind. door table chair sofa book. board clut.

PointNet [25] 78.6 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2
PointCNN [20] 88.1 65.4 94.2 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6
KPConv [35] - 70.6 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3
RandLA-Net [13] 88.0 70.0 93.1 96.1 80.6 62.4 48.0 64.4 69.4 69.4 76.4 60.0 64.2 65.9 60.1
BAAF-Net [29] 88.9 72.2 93.3 96.8 81.6 61.9 49.5 65.4 73.3 72.0 83.7 67.5 64.3 67.0 62.4
LEARD-Net [49] 89.1 72.5 94.2 96.9 81.8 65.1 50.9 69.9 72.5 70.6 78.2 68.6 67.2 66.1 60.3
LACV-Net [50] 89.7 72.7 94.5 96.7 82.1 65.2 48.6 69.3 71.2 72.7 78.1 67.3 67.2 70.9 61.6
PointTrans. [52] 90.2 73.5 94.3 97.5 84.7 55.6 58.1 66.1 78.2 77.6 74.1 67.3 71.2 65.7 64.8
U-Next [48] 89.5 73.2 93.6 96.9 84.2 66.1 54.6 67.6 75.5 73.6 74.5 62.9 66.2 74.0 61.7
DeepViewAgg. [31] - 74.7 90.0 96.1 85.1 66.9 56.3 71.9 78.9 79.7 73.9 69.4 61.1 75.0 65.9
PointNeXt [28] 90.3 74.8 94.2 96.8 85.0 61.5 64.2 68.5 78.7 77.0 70.1 72.4 70.9 70.3 63.3
SPTrans. [30] - 76.0 93.9 96.3 84.3 71.4 61.3 70.1 78.2 84.6 74.1 67.8 77.1 63.6 65.0
PointVector[7] 91.8 78.4 95.3 97.5 86.2 64.8 65.2 69.5 81.6 77.8 89.3 75.6 72.2 73.9 70.2
PointMeta [22] 91.4 77.0 94.9 97.6 85.6 64.4 62.8 68.2 82.1 77.1 83.8 75.4 71.1 70.1 68.5
(Ours) DeepLA-24 91.4 77.9 94.2 96.9 87.0 74.5 68.5 72.5 80.4 76.4 76.9 77.0 71.3 71.3 65.7
(Ours) DeepLA-60 91.9 79.0 94.8 97.6 88.2 76.2 69.9 73.6 82.7 78.0 77.6 78.1 72.1 71.8 66.8
(Ours) DeepLA-120 92.3 79.8 95.5 97.8 89.5 75.0 70.3 74.8 82.3 77.2 78.1 77.3 75.1 75.7 69.2

Table 7. Quantitative comparisons with the state-of-the-art methods on ScanNet v2 (test set). Bold indicates the best result, underline
indicates the best result excluding ours. We only report methods which have demonstrated per-class IoU in their papers.
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PointNet++ [26] 55.7 73.5 66.1 68.6 49.1 74.4 39.2 53.9 45.1 37.5 94.6 37.6 20.5 40.3 35.6 55.3 64.3 49.7 82.4 75.6 51.5
KPConv [35] 68.4 84.7 75.8 78.4 64.7 81.4 47.3 77.2 60.5 59.4 93.5 45.0 18.1 58.7 80.5 69.0 78.5 61.4 88.2 81.9 63.2
PointASNL [44] 66.6 70.3 78.1 75.1 65.5 83.0 47.1 76.9 47.4 53.7 95.1 47.5 27.9 63.5 69.8 67.5 75.1 55.3 81.6 80.6 70.3
RandLA-Net [13] 64.5 77.8 73.1 69.9 57.7 82.9 44.6 73.6 47.7 52.3 94.5 45.4 26.9 48.4 74.9 61.8 73.8 59.9 82.7 79.2 62.1
Stra. Trans. [17] 74.7 90.1 80.3 84.5 75.7 84.6 51.2 82.5 69.6 64.5 95.6 57.6 26.2 74.4 86.1 74.2 77.0 70.5 89.9 86.0 73.4
Point Trans. v2 [40] 75.2 74.2 80.9 87.2 75.8 86.0 55.2 89.1 61.0 68.7 96.0 55.9 30.4 76.6 92.6 76.7 79.7 64.4 94.2 87.6 72.2
PointMeta [22] 71.4 83.5 78.5 82.1 68.4 84.6 53.1 86.5 61.4 59.6 95.3 50.0 24.6 67.4 88.8 69.2 76.4 62.4 84.9 84.4 67.5
LargeKernel3D [4] 73.9 90.9 82.0 80.6 74.0 85.2 54.5 82.6 59.4 64.3 95.5 54.1 26.3 72.3 85.8 77.5 76.7 67.8 93.3 84.8 69.4
LRPNet [19] 74.2 81.6 80.6 80.7 75.2 82.8 57.5 83.9 69.9 63.7 95.4 52.0 32.0 75.5 83.4 76.0 77.2 67.6 91.5 86.2 71.7
Retro-FPN [41] 74.4 84.2 80.0 76.7 74.0 83.6 54.1 91.4 67.2 62.6 95.8 55.2 27.2 77.7 88.6 69.6 80.1 67.4 94.1 85.8 71.7
DMF-Net[45] 75.2 90.6 79.3 80.2 68.9 82.5 55.6 86.7 68.1 60.2 96.0 55.5 36.5 77.9 85.9 74.7 79.5 71.7 91.7 85.6 76.4
CondaFormer [9] 75.5 92.7 82.2 83.6 80.1 84.9 51.6 86.4 65.1 68.0 95.8 58.4 28.2 75.9 85.5 72.8 80.2 67.8 88.0 87.3 75.6
(Ours) DeepLA-120 77.2 93.9 82.4 85.4 77.1 84.0 56.4 90.0 68.6 67.7 96.1 53.7 34.8 76.9 90.3 78.5 81.5 67.6 93.9 88.0 77.2
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Figure 4. Visual comparison of semantic segmentation results on S3DIS dataset.

Input Ground Truth DeepLA-120 PointVector

wall cabinet chair sofa table door windowrefrigerator shower curtainfloor
bed picturecounter desk curtain bathtub toilet sink other furniturebookshelf

Figure 5. Visual comparison of semantic segmentation results on ScanNet v2 dataset.
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