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This supplementary document is organized as follows:
– Section 1 provides a detailed explanation and pseudo-

code to clarify the procedure for enhancing compressed
frames.

– Section 2 reports quantitative comparisons for quality
enhancement in highly compressed scenarios (i.e., CRF40,
CRF45 and CRF48) to demonstrate the robustness of the
proposed method.

– Section 3 provides more qualitative comparisons on
quality enhancement (Section 3.1) and downstream tasks
(Section 3.2), including video super-resolution, optical flow
estimation, video object segmentation, and video inpaint-
ing.

– Section 4 presents results of extending the proposed
framework to compressed video super-resolution to demon-
strate its applicability across various domains.

– Section 5 provides visual results of incorporating MV
alignment and region-aware refinement, analyzing the num-
ber of experts and impact of frame adaption for improving
the temporal consistency.

– Section 6 introduces details of experimental settings,
including the dataset preparation, baseline methods, and im-
plementation details.

– Section 7 discusses related works that also focus on
downstream vision tasks, and further analyzes applicable
scenarios of these works and the proposed method.

1. Procedure of Quality Enhancement
The goal of compressed video enhancement is to re-
construct high-quality outputs {ŷ1, ŷ2, ..., ŷT } from com-
pressed inputs {x1, x2, ..., xT }. Our proposed frame-
work achieves this through two key components: the
compression-aware adaptation (CAA) network, denoted as
Gϕ, and the bitstream-aware enhancement (BAE) network,
denoted as Fθi , which ensure adaptively handling different
compression settings and reconstructing high-fidelity con-
tent, respectively. The overall procedure is summarized in
Algorithm 1.

*Corresponding author.

Algorithm 1 Procedure of Enhancing Compressed Frames

Input: Sequence-wise CRFs, Frame-wise CRFi, Input
frames {x1, x2, ... , xn}, Motion vectors MV , Par-
tition map Pi

Output: Enhanced high-quality frames {ŷ1, ŷ2, ... , ŷn}
1: Sequence adaptation

fθs ← Gϕs (CRFs, {fθ1 , fθ2 , ... , fθN })
2: for xi ∈ {x1, x2, ... , xT } do
3: Frame adaptation

Fθi ← fθi ← Gϕi
(CRFi, fθs)

4: Motion vector alignment
x̂i ← [MV (hp

i ), MV (hf
i ), xi]

5: Region-aware refinement
ŷi ←Fθi (x̂i, Pi)

6: end for
7: return {ŷ1, ŷ2, ... , ŷn}

Compression-aware adaptation (CAA) network Gϕ fo-
cuses on hierarchical parameters adaptation, consisting of
sequence-wise weight generator Gϕs and frame-wise pa-
rameters generator Gϕi to adaptively tailor the enhance-
ment model to the characteristics of compressed frames (see
Step 1 and Step 3). The obtained frame-wise expert layer
fθi further constructs the subsequent bitstream-aware en-
hancement network Fθi (as shown in Step 3).
Bitstream-aware enhancement (BAE) network Fθi

frame-wisely applies techniques such as motion vector
(MV) alignment (as shown in Step 4) and region-aware re-
finement (as shown in Step 5) to enhance temporal consis-
tency and reconstruct fine-detailed results.

2. Quantitative Results
To assess the quality enhancement performance of each
method in highly compressed scenarios, we conduct eval-
uations at CRF values of 40, 45 and 48 and summarize the
results with PSNR and SSIM (the higher the better). Please
note that the above CRF values are not included during
training. The results of the REDS4 dataset [16] are reported
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Frame 018, Clip 015, CRF35 MFQE 2.0 STDF Ours GTS2SVRInput Metabit

Frame 090, Clip 011, CRF35 MFQE 2.0 STDF Ours GTS2SVRInput Metabit

Figure 1. Qualitative results on quality enhancement, where the results are evaluated on the REDS4 dataset [16]. As can be seen, our
method demonstrates its effectiveness in reducing compression artifacts, resulting in visually appealing outputs with clear details. In
contrast, the compared methods fail to fully suppress these artifacts, leaving noticeable distortions (e.g., the car in the 1st row).

in Table 1. As can be seen, performing frame-wise adapta-
tion with slice type (marked with grey ) achieves a similar
performance (less than 0.03 dB in terms of PSNR) to the
original design. Additionally, the proposed method shows
robust performance in enhancing the highly compressed in-
puts, achieving PSNR gains of 0.74 dB, 0.46 dB and 0.33
dB on CRF40, CRF45 and CRF48, respectively. In contrast,
the other methods provide limited and even no improve-
ment. For instance, STDF [3] and S2SVR [14] achieve a
minor PSNR gain of 0.04 dB and 0.41 dB at CRF40, respec-
tively. MFQE 2.0 [7] and Metabit [4] show no improvement
on the highly compressed inputs, indicating their depen-
dency on a well-designed training strategy to cope with a
wide range of CRFs instead of a general mix-training strat-
egy of various compression levels.

3. More Qualitative Comparisons

3.1. Quality Enhancement
We provide visual comparisons on the task of quality en-
hancement in Figure 1. As can be seen, MFQE 2.0 [7]
and Metabit [4] fail in eliminating the compression artifacts,
leading to the texture distortion (e.g., the car in the 1st row).
Despite STDF [3] and S2SVR [14] effectively refining the
compressed frames, they struggle to eliminate the color dis-
tortion and provide artifact-free results (e.g., the building in
the 2nd row). In contrast, the proposed method effectively
eliminates the compression artifacts and corrects the color
distortion, achieving visually satisfying results.

Method CRF40 CRF45 CRF48

PSNR↑ / SSIM↑ PSNR↑ / SSIM↑ PSNR↑ / SSIM↑
Input 26.69 / 0.7352 24.38 / 0.6452 23.17 / 0.5989
MFQE 2.0 [7] 26.69 / 0.7369 24.37 / 0.6466 23.16 / 0.6001
STDF [3] 27.03 / 0.7477 24.54 / 0.6544 23.26 / 0.6058
S2SVR [14] 27.10 / 0.7506 24.59 / 0.6575 23.30 / 0.6091
Metabit [4] 26.69 / 0.7352 24.38 / 0.6452 23.17 / 0.5988

Ours 27.42 / 0.7619 24.82 / 0.6697 23.47 / 0.6201
27.43 / 0.7619 24.84 / 0.6697 23.50 / 0.6215

Table 1. Quantitative results on quality enhancement, where
the evaluation is conducted in highly compressed scenarios (i.e.,
CRF40, CRF45 and CRF48) and summarized with PSNR and
SSIM (the higher the better). The best and second best results are
highlighted with bold and underline. Results obtained by replac-
ing frame-wise CRFi with slice type are highlighted with grey .

3.2. Versatility Evaluation

Video super-resolution. As shown in Figure 2, it is chal-
lenging to apply video super-resolution (VSR) models that
are tailored for clean data to compressed inputs, leading
to the amplification of compression artifacts, as observed
in the 1st column. Equipping the baselines with pre-
enhancing methods such as MFQE 2.0 [7] and Metabit [4]
provides limited quality improvement, and STDF [3] strug-
gles to adequately suppress these artifacts (e.g., the car
in the 3rd row). In contrast, pre-enhancing with our
method and S2SVR [14] achieves artifact-free results, pre-
serving the sharp edges and details of the content. No-
tably, our approach outperforms S2SVR [14] in terms of



Input + STDF + OursBasicVSR + MFQE 2.0 GT+ S2SVR + Metabit

Input + STDF + OursBasicVSR++ + MFQE 2.0 GT+ S2SVR + Metabit

Figure 2. Qualitative results of ×4 video super-resolution on the REDS4 dataset [16]. As can be seen, pre-enhancing compressed frames
with our method effectively prevents the amplification of compression artifacts. While the other enhancement methods struggle to eliminate
the artifacts and even severe the distortions in some cases (e.g., STDF [3] in the 4th row).

+ STDF + OursRAFT + MFQE 2.0Frame + S2SVR + Metabit

+ STDF + OursKPAFlow + MFQE 2.0Frame + S2SVR + Metabit

Figure 3. Qualitative results of optical flow estimation on the KITTI-2015 dataset [6], where we mark the inaccurate boundaries with red
arrows. As can be seen, equipping the baseline models with our method effectively improves the accuracy at the boundaries of moving
objects (e.g., the moving car of the 1st row).

model complexity and computational efficiency, achieving
significantly lower model complexity and faster processing
speeds, as detailed in Tab. 1.
Optical flow estimation. Figure 3 presents the visualiza-
tions of predicted optical flow, with inaccurate boundaries
highlighted by red arrows. As can be seen, when estimating
optical flow from compressed inputs, the inaccuracy is par-
ticularly prominent near motion boundaries (e.g., the front
of the car in the 1st row). In contrast, the proposed method
demonstrates superior performance in addressing these is-
sues, delivering more accurate results in these challenging

regions compared to other methods. For instance, in the
1st row, our method effectively corrects the optical flow er-
rors produced by RAFT [20], whereas both MFQE 2.0 [7]
and S2SVR [14] fail to provide notable improvements, and
Metabit [4] perturbs the performance of downstream opti-
cal flow estimation. This highlights the effectiveness of our
method in assisting the downstream optical flow estimation
on compressed videos.
Video object segmentation. The results of video object
segmentation are visualized in Figure 4. As can be seen,
accurately segmenting the objects in compressed images is



DeAoT + MFQE 2.0 + STDF + Ours GT+ S2SVR + Metabit

QDMN + MFQE 2.0 + STDF + Ours GT+ S2SVR + Metabit

Figure 4. Qualitative results of video object segmentation on DAVIS-17 val dataset [17]. Directly performing VOS on compressed images
often results in inaccurate masks (e.g., results in the 1st column). In contrast, pre-enhancing the compressed inputs with our proposed
method significantly improves mask accuracy (e.g., the tail in the 4th row).

Masked frame 𝐸!FGVI + Ours+ MFQE 2.0 + STDF + S2SVR + Metabit

Figure 5. Visual results of video inpainting on the DAVIS-17 val dataset [17]. As can be seen, pre-enhancing the compressed inputs with
the proposed method significantly reduces artifacts and color distortions in the removed regions (e.g., the horse hoof in the 3rd row).

challenging for VOS baselines (e.g., under-segmented mask
of the tail predicted by DeAoT [21]). Nevertheless, such
inaccuracy is not adequately -addressed by pre-enhancing
the input videos with methods such as MFQE 2.0 [7],
S2SVR [14], and Metabit [4]. In contrast, the proposed
method effectively mitigates errors and improves mask ac-
curacy, underscoring the effectiveness of our method in sup-
porting VOS on compressed video data.

Video inpainting. To further investigate the versatility of
our method, we extend the downstream task to video in-
painting, a generative task that needs to handle blurred ob-
ject boundaries due to image compression [22]. The results
of removing the specified objects from compressed frames
are shown in Figure 5. As can be seen, due to the mis-
alignment between compressed objects and their masks, it
is hard for E2FGVI [13] to adequately remove the speci-
fied object, resulting in noticeable artifacts and color distor-
tions in the removed region (e.g., the wall in the 1st row).

In contrast, pre-enhancing the compressed inputs using our
proposed method substantially improves the inpainting re-
sults, effectively mitigating artifacts and delivering results
with consistent structures, demonstrating our capability of
enhancing generative tasks under compression conditions.

4. Compressed Video Super-Resolution

The proposed method is designed to be versatile, without
any assumptions about downstream tasks, which ensures
broad applicability across various domains. Yet, it can
be readily adapted for specific applications when required.
Here we demonstrate this adaptability with the application
to 4× video super-resolution for compressed videos. By
expanding 30 region-aware refinement-integrated residual
blocks and incorporating a pixel shuffle layer at the end
of the network, we convert the enhancement network into
a VSR-specific one. We follow COMISR [11] to prepare
the compressed training dataset and adopt the same train-
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Figure 6. FLOPs and performance comparison of 4× compressed video super-resolution on the REDS4 dataset [16], where the compression
level is set to CRF25. Despite not being tailored for VSR, the proposed method shows competitive performance.

Frame 076, Clip 000, CRF35

Input Baseline + MV Align. + RA Refine. GT

Figure 7. Qualitative results of the ablation study on MV align-
ment (MV Align.) and region-aware refinement (RA Refine.). As
can be seen, incorporating the region-aware refinement effectively
reduces distortions and enhances the textures.

ing configuration. The quantitative results at the compres-
sion level of CRF25 are summarized with PSNR/SSIM,
and reported in Figure 6. As can be seen, although the
proposed method is not tailored for VSR, it still provides
competitive results with minimal computational complex-
ity. For instance, the proposed method outperforms Icon-
VSR [2] by 0.86 dB in terms of PSNR, costing only 0.41×
of FLOPs. Additionally, our method achieves a PSNR gain
over COMISR [11] (specifically designed for compressed
VSR) by 0.23 dB, while taking 0.58× FLOPs. This indi-
cates the versatility and potential of our method to serve as
a general solution for leveraging codec information in spe-
cialized tasks.

5. Ablation Studies
In this section, we present visual results from ablation stud-
ies to assess the impact of incorporating MV alignment and

y

t GT+ Seq. Adapt. + Frame Adapt.

Figure 8. Visualization of the temporal profile, which tracks a
specified column (marked with the yellow dotted line) over time.

region-aware refinement into the baseline model (as illus-
trated in Sec. 5.3 of the submission). Additionally, we an-
alyze the effect of varying the number of experts (N ) on
model performance. These experiments are conducted on
the REDS [16] dataset, with models trained for 50K itera-
tions for fast evaluation. The results are summarized with
PSNR and SSIM.
MV alignment. As shown in Figure 7, aligning frames
with motion vectors (denoted as + MV Align.) effectively
improves the texture inconsistency, as highlighted by the
yellow arrow. This demonstrates the effectiveness of MV
alignment in aligning and propagating high-quality refer-
ence frames, therefore improving the overall quality of
compressed videos.
Region-aware refinement. As shown in Figure 7, refin-
ing features with the guidance of partition map (denoted as
+ RA Refine.) effectively reduces distortions and enhances
the fine details (e.g., the boundary of bricks marked by the
yellow arrow), obtaining results with coherent textures.
Frame adaptation. To assess its impact on temporal con-
sistency, a comparison of the temporal profile is included
in Figure 8. As can be seen, frame-wise adaptation helps
to adaptively enhance each frame, resulting in a smoother
temporal transition (as indicated by the yellow arrows).
Number of experts. We investigate the number of ex-
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Figure 9. Ablation study on the number of experts. The design of
mixing experts leads to notable performance improvement, and the
configuration of 6 experts is selected to balance the performance
and model complexity.

perts by setting different values for N . As shown in Fig-
ure 9, compared to a simple single-expert network, increas-
ing N effectively improves the performance but does not
yield consistent performance gains. Based on the results,
we adopt N = 6 as it achieves optimal results with man-
ageable model complexity.

6. Experimental Settings
Dataset preparation. We adopt the widely-used
H.264 [19] standard and FFMPEG to generate compressed
videos by specifying the CRF values (i.e., 15, 25 and 35).
The CRFs value and slice type of each compressed se-
quence are extracted from the header. MVmed [1] is applied
to extract motion vectors and partition maps.
Compared methods and downstream models. For the
task of quality enhancement, we follow the official sugges-
tions to locate keyframes with slice types for MFQE 2.0 [7].
For STDF [3], we adopt the STDF-R3L variant. Since
Metabit [4] only addresses I/P frames, we reimplement it
to adapt the adopted dataset that contains I/P/B frames. For
the task of video object segmentation (VOS), we adopt the
SwinB-DeAOT-L variant from DeAoT [21] to ensure strong
VOS performance.
Implementation details. In practice, expert layers are im-
plemented with convolutional layers initialized with Kaim-
ing initialization [9]. The sequence-wise weight gener-
ator is constructed with two fully connected layers fol-
lowed by a softmax activation. The parameters re-weighting
is implemented with dynamic parameters mechanism [8].
The frame-wise parameters generator is constructed with
two fully connected layers and a sigmoid normalization.
Introducing parameters △θi for fθs is implemented with
dynamic transfer mechanism [12]. The bitstream-aware
enhancement network is constructed with 8 region-aware
refinement-integrated residual blocks. Each block contains
64 channels. The FLOPs and inference speed are computed
with an input size of 320×180 on a GeForce GTX 1080

Ti GPU. We merge the training splits of the REDS [16]
and DAVIS [17] datasets for training, and further augment
the dataset by downsampling the REDS dataset [16] using
the Bicubic interpolation at a scaling factor of 4. During
training, input frames are sampled from uncompressed data
and compressed data with probabilities of 0.2 and 0.8, re-
spectively. The compressed input frames are sampled from
CRF15, CRF25 and CRF35 with equal probability. These
frames are then randomly augmented with horizontal flips,
vertical flips, and rotations. The length of input sequences
is set to 15 and the batchsize is set to 10. The input patch
size is set to 128×128. We adopt the Adam optimizer [10]
with β1 = 0.9, β2 = 0.99. The initial learning rate is
set to 2 × 10−4 and adjusted with the Cosine Annealing
scheme [15]. The whole training takes iterations of 250K.
We use 2 Nvidia GeForce RTX 3090 GPUs to complete
these experiments.

7. Discussions
We explore the role of video enhancement in improving the
performance of downstream tasks. Recent advancements in
video codecs also introduce task-aware encoding [5] and de-
coding [18] frameworks to better support downstream tasks.
However, these approaches typically require joint training
of the compression model and target downstream tasks. In
contrast, our approach serves as a plug-and-play adapter to
enhance the performance of downstream models, making
our method more practical, particularly in scenarios where
the downstream task is unknown or subject to change. A
promising strategy would be prioritizing our approach when
the downstream task is ambiguous or not specified, while
leveraging the aforementioned methods when the task is
well-defined and can directly benefit from the integrated
task-aware compression.
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