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7. Method Details
Backbone. Our Point-Encoder and Point-Decoder follow
the KPConv-FPN [32] structure to perform point-level fea-
ture extraction. Before inputting the points into the Point-
Encoder, we voxel downsample the KITTI point cloud with
a voxel size of 0.3m and the nuScenes point cloud with a
voxel size of 0.2m. The Point-Encoder and Point-Decoder
follow GeoTrans [28], with 5 and 3 layers, respectively. For
the BEV-Encoder, we adopt a ResNet-like [15] structure
with 3 layers.
BEV Patch and Superpoint Indexing. Given the super-
points, their 3D coordinates are projected onto the resolu-
tion (H×W ) of the original BEV image. By accounting for
the number of 2D max pooling operations β, we determine
the index of each superpoint relative to the downsampled
BEV patch. This correspondence establishes a one-to-one
mapping between the features of the superpoints and BEV
patches. Let (ui, vi) represent the 2D coordinates of a su-
perpoint in the BEV image. The corresponding index in the
downsampled BEV feature map is calculated as:

u′i =
⌊ ui

2β

⌋
, v′i =

⌊ vi
2β

⌋
. (6)

Here, (u′
i, v

′
i) represents the index of the patch feature in the

downsampled BEV image.
Point Matching. After obtaining the superpoint corre-
spondences Ĉ, we follow a point-to-node assignment strat-
egy [28] to uniquely assign dense points P̃ and Q̃ to their
nearest superpoints, resulting in groups GP and GQ . Then,
based on the superpoint correspondences Ĉ, we perform lo-
cal dense matching. Unlike previous work, we input the
attention features H̄P̂ and H̄Q̂ into the Point-Decoder to
obtain dense point features FP̃ ∈ Rñ×d̃ and FQ̃ ∈ Rm̃×d̃.
For a given superpoint correspondence Ĉi and its corre-
sponding local dense points GP

i and GQ
i , we compute the

cost matrix C̃, where C̃i = Fi
P̃

(
Fi

Q̃

)T
/
√

d̃. Then, we
use the Sinkhorn algorithm [30] to recompute the similar-
ity matrix, resulting in C̄. Based on C̄, we apply mutual
top-k to select the dense point correspondences. Finally,
we gather all the dense point correspondences C̃i for each
coarse match in Ĉ , forming the final dense point correspon-
dences C =

⋃|Ĉ|
i=1 C̃i.

Loss Function. Our framework’s loss function consists of
two components, L = Lc+Lf , where Lc and Lf represent
the same superpoint matching loss and point matching loss
as [28].
Implementation Details. We conduct our experiments us-
ing PyTorch [26] on an Intel (R) Xeon (R) Gold 5118 CPU

and an NVIDIA RTX 3090 GPU. The Adam optimizer [17]
is used to train our model, with an initial learning rate of
1e-4 and a weight decay of 1e-6.

8. Evaluation Metrics
We follow previous work [28] and report Patch Inlier Ratio
(PIR), Inlier Ratio (IR), Relative Rotation Error (RRE), Rel-
ative Translation Error (RTE) and Registration Recall (RR).
Patch Inlier Ratio (PIR) represents the proportion of
superpoint (patch) matches that correctly overlap when
aligned using the ground-truth transformation TP→Q. This
metric indicates the reliability and accuracy of the proposed
superpoint (patch) correspondences:

PIR =
1

|Ĉ|

∑
(p̂i,q̂j)∈Ĉ

1(∃p̃ ∈ GP
i , q̃ ∈ GQ

i s.t. ∥TP→Q (p̃)−q̃∥2 < τ),

(7)
where τ = 0.6m and 1 is the indicator function.
Inlier Ratio (IR) represents the proportion of inlier
matches among all candidate point correspondences. A
match qualifies as an inlier if the distance between the
two points transformed by the ground-truth transformation
TP→Q is less than a threshold τ1 = 1.0m:

IR =
1

|C|
∑

(p̃i,q̃j)∈C

1
(
∥TP→Q (p̃i)− q̃i∥2 < τ1

)
. (8)

Relative Rotation Error (RRE) represents the geodesic
distance measured in degrees between the estimated Rest

and ground-truth Rgt rotation matrices. It quantifies the
discrepancy between the predicted and actual rotation ma-
trices:

RRE = arccos

(
trace

(
RT

est ·Rgt − 1
)

2

)
. (9)

Relative Translation Error (RTE) represents the Eu-
clidean distance between the estimated test and ground-
truth tgt translation vectors. This metric assesses the dif-
ference between the estimated and ground-truth translation
vectors:

RTE = ∥test − tgt∥2. (10)

Registration Recall (RR) for all outdoor datasets is defined
as the proportion of point cloud pairs where both RRE and
RTE fall below specified thresholds (RRE < 5◦ and RTE
< 2m):

RR =
1

M

M∑
i=1

1 (RREi < 5◦ ∧ RTEi < 2m) , (11)



Model KITTI@10m KITTI@20m KITTI@30m Train on KITTI@40m

RRE RTE RRE∗ RTE∗ RR RRE RTE RRE∗ RTE∗ RR RRE RTE RRE∗ RTE∗ RR RRE RTE RRE∗ RTE∗ RR mRR

FCGF [8] 1.180 0.285 6.713 3.304 65.6 1.846 0.532 15.044 18.343 5.0 – – 21.267 29.356 0.0 2.089 0.524 23.732 39.583 0.7 17.8
Predator [16] 1.560 1.073 7.622 9.567 0.4 – – 14.587 19.495 0.0 1.873 0.607 18.341 29.323 0.5 2.037 1.165 22.941 38.708 0.7 0.4
CoFiNet [39] 1.325 0.280 7.400 3.420 61.4 1.899 0.588 23.895 17.138 8.5 1.897 0.678 28.712 24.868 10.3 2.375 0.888 23.776 25.417 23.7 26.0
GeoTrans [28] 1.296 0.300 38.783 19.247 42.2 1.133 0.319 16.224 5.267 68.7 1.183 0.375 5.524 2.217 80.5 1.037 0.514 8.639 3.235 85.6 69.3
BUFFER [2] 1.119 0.182 8.679 1.893 81.6 2.202 0.435 36.861 12.615 30.2 2.747 0.556 70.534 27.838 3.2 – – 76.648 39.030 0.0 28.8
PARE [38] 4.022 1.383 62.691 43.978 0.4 0.951 0.293 63.597 23.863 0.4 3.275 0.329 66.382 18.167 1.1 1.695 0.685 46.054 16.752 25.2 27.1
UGP (Ours) 0.384 0.117 0.749 0.263 98.6 0.794 0.249 3.652 1.613 89.7 1.139 0.378 13.235 5.616 78.9 1.385 0.596 17.767 8.927 71.9 84.8

Table 6. Cross-distance generalization experiments. We train at KITTI@40m and then test at 40m and nearer distances at 10m, 20m,
and 30m. RRE and RTE denote the error for successfully matched point cloud pairs, while RRE∗ and RTE∗ reflect the error for all point
cloud pairs, providing a more comprehensive evaluation. The final column shows the mean Registration Recall.

Model Train on KITTI@10m KITTI@20m KITTI@30m KITTI@40m

RRE RTE RRE∗ RTE∗ RR RRE RTE RRE∗ RTE∗ RR RRE RTE RRE∗ RTE∗ RR RRE RTE RRE∗ RTE∗ RR mRR

CoFiNet [39] 0.699 0.175 1.912 0.731 94.2 1.739 0.488 9.901 8.917 46.6 1.934 0.878 22.910 28.894 1.1 - - 24.768 39.194 0.0 35.5
GeoTrans [28] 0.291 0.082 0.358 0.095 99.3 2.453 0.815 36.227 26.501 2.1 4.298 1.232 44.197 35.805 0.5 2.229 0.855 48.724 45.975 1.4 25.8
BUFFER [2] 0.309 0.091 0.311 0.097 99.8 0.645 0.188 2.988 1.554 92.5 0.997 0.291 24.145 15.086 51.4 1.511 0.445 45.820 30.337 20.1 66.0
UGP (Ours) 0.296 0.093 0.336 0.110 99.5 0.488 0.170 0.615 0.274 97.5 0.816 0.354 5.348 1.879 90.3 1.091 0.527 19.566 11.560 66.9 88.6

Table 7. Cross-distance generalization experiments on KITTI-Sparse. We train at KITTI@10m and then test at KITTI-
Sparse@10m and farther distances at KITTI-Sparse@20m, KITTI-Sparse@30m, and KITTI-Sparse@40m. KITTI-Sparse denotes
that we use farthest point sampling (FPS) to downsample the input point clouds to 5000 points. RRE and RTE denote the error for suc-
cessfully matched point cloud pairs, while RRE∗ and RTE∗ reflect the error for all point cloud pairs, providing a more comprehensive
evaluation. The final column shows the mean Registration Recall.

where M is the number of point cloud pairs to be aligned.

9. Additional Experiments
9.1. Cross-distance (train on KITTI@40m)
To comprehensively evaluate the generalization across
different distances, we train on long-distance data
(KITTI@40m) and generalize to shorter distances, as
shown in Tab. 6. The results reveal that methods such as
FCGF [8], Predator [16], CoFiNet [39], BUFFER [2], and
PARE [38] struggle to achieve direct convergence at long
distances. In contrast, the GeoTrans [28] network demon-
strates the ability to converge at long distances and de-
liver good performance. However, its performance drops
significantly when applied to simpler scenarios, such as
KITTI@10m and KITTI@20m. This suggests that Geo-
Trans heavily relies on the visible data distribution, fur-
ther highlighting that its cross-attention mechanism fails
to adapt to variations in consistency representation of the
same structure across different distances and datasets. Con-
sequently, it cannot learn robust and generalizable features
for LiDAR scenes. In contrast, our method not only suc-
cessfully converges on KITTI@40m, but also gradually im-
proves its performance as the distance decreases, consistent
with the expected difficulty of the registration task. Ulti-
mately, our method UGP achieves an mRR of 84.8%, which
is 15.5% significantly ahead of the suboptimal GeoTrans.

9.2. Cross-dataset (KITTI@10m to Waymo@10m)
To comprehensively evaluate the cross-dataset generaliza-
tion ability of our method, we supplemented the results with

Model Waymo@10m

RRE(◦) RTE(m) RRE∗(◦) RTE∗(m) RR(%)

FCGF [8] 0.137 0.081 0.597 0.155 99.2
SpinNet [1] 0.377 0.096 0.553 0.171 99.2
Predator [16] 0.190 0.082 0.190 0.082 100.0
CoFiNet [39] 0.179 0.080 0.179 0.080 100.0
GeoTrans [28] 0.255 0.124 3.740 7.247 61.5
Buffer [2] 0.171 0.088 0.171 0.088 100.0
PARE [38] 0.270 0.136 1.051 4.003 76.9
UGP (Ours) 0.137 0.075 0.137 0.075 100.0

Table 8. The results of the cross-dataset generalization experi-
ments from KITTI@10m to Waymo@10m.

training on KITTI@10m and testing on Waymo@10m. For
the Waymo dataset (64-line LiDAR), we follow the same
protocol in [31] and utilize the testing subset, the results are
shown in Tab. 8. Our method achieved a state-of-the-art RR
of 100% and the lowest errors in both RRE and RTE.

9.3. KITTI-Sparse

To evaluate the robustness of the network to extremely
sparse LiDAR point clouds, we use farthest point sam-
pling (FPS) to downsample the input point clouds to 5000
points, which is referred to as KITTI-Sparse. We compare
CoFiNet [39], GeoTrans [28], and BUFFER [2], with the
results shown in Tab. 7. UGP demonstrates a significant
advantage at 20m, 30m, and 40m. Compared to the subop-
timal BUFFER, UGP achieves 97.5% (+5.0%) RR at 20m,
90.3% (+38.9%) RR at 30m, and 66.9% (+46.8%) RR at
40m.



Train on KITTI@10m KITTI@20m KITTI@30m KITTI@40m

Noise σ Method RRE RTE RRE∗ RTE∗ RR RRE RTE RRE∗ RTE∗ RR RRE RTE RRE∗ RTE∗ RR RRE RTE RRE∗ RTE∗ RR mRR

0.01
FCGF [8] 0.214 0.061 0.868 0.153 98.9 0.389 0.128 5.507 1.323 92.8 1.080 0.415 11.739 10.998 62.0 1.634 0.835 20.555 30.727 18.7 68.1

BUFFER [2] 0.266 0.073 0.269 0.079 99.8 0.472 0.128 0.520 0.280 98.6 0.669 0.237 1.366 1.876 93.0 1.037 0.363 13.327 15.820 61.1 88.1
UGP (ours) 0.243 0.071 0.294 0.078 99.8 0.399 0.144 0.441 0.219 99.3 0.641 0.282 2.206 1.052 95.7 0.994 0.478 12.938 7.174 78.4 93.3

0.03
FCGF [8] 0.204 0.060 0.908 0.158 98.7 0.374 0.117 6.149 1.731 91.4 1.014 0.396 11.600 11.886 58.2 1.648 0.728 22.072 31.061 17.9 66.6

BUFFER [2] 0.277 0.074 0.278 0.080 99.8 0.478 0.127 0.508 0.342 98.6 0.720 0.243 3.293 2.026 93.0 0.959 0.358 18.489 17.286 55.4 86.7
UGP (ours) 0.246 0.070 0.292 0.077 99.8 0.419 0.147 0.461 0.222 99.3 0.607 0.285 2.054 1.180 95.7 0.880 0.451 16.181 6.449 77.0 93.0

0.05
FCGF [8] 0.216 0.061 1.205 0.235 98.6 0.422 0.130 5.774 1.839 91.0 1.248 0.410 11.973 14.004 53.3 1.601 1.004 19.855 31.803 17.0 65.0

BUFFER [2] 0.287 0.073 0.289 0.080 99.8 0.496 0.129 0.544 0.280 98.6 0.790 0.252 3.491 2.286 91.9 1.119 0.397 18.584 17.225 51.8 85.5
UGP (ours) 0.253 0.070 0.285 0.077 99.8 0.427 0.150 0.460 0.224 99.3 0.597 0.283 3.554 1.214 93.5 1.101 0.488 14.526 8.571 75.5 92.0

Table 9. Comparison of results under varying noise intensities, with σ representing the standard deviation. RRE and RTE denote
the error for successfully matched point cloud pairs, while RRE∗ and RTE∗ reflect the error for all point cloud pairs, providing a more
comprehensive evaluation. The final column shows the mean Registration Recall.

(a) KITTI@20m (b) KITTI@30m

(c) nuScenes@20m (d) nuScenes@30m

Figure 7. Visualization of data distributions for ground truth
matching point pairs across varying distances and datasets.
(a-d) Each point in the figure represents a ground truth corre-
sponding superpoint pair. The position of each point indicates
the neighborhood count (NC) of the superpoint within a radius
of r = 2.4m in both the source (src) and target (tgt) point clouds,
and the color represents the overlap degree of the corresponding
superpoint pairs after rotation by the ground truth transformation.

9.4. KITTI-Noise

To evaluate the robustness of our method to noise in real-
world environments, we add Gaussian-distributed random
noise N

(
0, σ2

)
(clipped to [−3σ,+3σ]) to each point’s

position to simulate the measurement errors and noise en-
countered by LiDAR sensors in real-world scenarios, as
shown in Tab. 9. Since other methods almost completely
fail at long ranges, we only compare our method with
FCGF [8] and BUFFER [2]. Our method achieves the high-
est RR across different levels of noise. Notably, the RR
of our method remains unaffected at short distances, such
as KITTI@10m and KITTI@20m. At KITTI@30m, the

RR decreases by 3.3% under a noise level of σ = 0.05.
At KITTI@40m, the decrease reaches 6.5% under the same
noise level. In summary, our method experiences an mRR
reduction of no more than 2.5% (from 94.5% to 92.0%) at
an intensity of σ = 0.05, demonstrating a certain level of
robustness to noise.

LayerNum KITTI@30m (RR%) KITTI@40m (RR%)
2 95.1 80.6
3 96.8 82.0
4 95.7 74.8
5 96.2 72.7
6 95.7 72.7

Table 10. Ablation experiment of progressive self-attention
module partitioning with different number of spatial layers L.
L = 3 is selected to achieve the highest RR on KITTI@30m and
KITTI@40m.

9.5. Ablation of Parameter
We conducted an ablation study on the number of layers L
used to divide the space in the PSA. As shown in Tab. 10,
we selected L = 3, which provided the best performance,
as the final network implementation.

9.6. Mechanism Analysis
Admittedly, cross-attention achieves promising perfor-
mance under same-distance/dataset settings. However, for
LiDAR registration requiring cross-domain generalization,
we identify a fundamental limitation: Cross-attention learns
static density matching patterns from training data but
struggles to extrapolate to the real physical law of LiDAR
density decay (ρ ∝ 1/d2). When applied to cross-distance
or cross-dataset scenarios, the learned correlation patterns
become invalid due to density scaling or differences in Li-
DAR type.

To this end, we analyzed the Softmax(QKT /
√
d)

mechanism in UGP w. cross-attention, as shown in Fig. 8.
At K@10m training, regions with high cross-attention
scores (Top-10) covered 91.64% of true matches, validat-
ing the effectiveness of the QKT mechanism in capturing



point cloud correspondences and guiding feature updates.
However, cross-distance or cross-dataset scenarios exhibit
LiDAR distribution shifts, causing true matches in high-
score regions to plummet. This introduces false matches,
increases feature ambiguity, and weakens generalization.

cross-dataset generalizationcross-distance generalization

Figure 8. Visualization of the matching hit ratio in cross-
distance and cross-dataset generalization experiments.

10. Visualizations
LiDAR Point Cloud Registration Characteristics. To
supplement Fig. 2 (a) in Sec. 3, we provide additional de-
tails. Specifically, Fig. 7 illustrates the data distributions of
ground truth matching point pairs for KITTI and nuScenes
at distances of 20m and 30m.
Registration Results. The cross-distance registration re-
sults for KITTI and nuScenes are shown in Fig. 9 and
Fig. 10.



Figure 9. Cross-distance generalization visualization of GeoTrans [28], BUFFER [2], and UGP on the KITTI [12] dataset. Each row
shows the point cloud pair matching results at different distances.



Figure 10. Cross-distance generalization visualization of GeoTrans [28], BUFFER [2], and UGP on the nuScenes [4] dataset. Each row
presents the point cloud pair matching results at different distances.
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