
PMA: Towards Parameter-Efficient Point Cloud Understanding via Point
Mamba Adapter (Supplementary Material)

1. Implementation Details

We utilized the officially provided pre-trained Point-BERT
[6], Point-MAE [3], and PointGPT-L [1] models as our
point cloud pre-training models. For a fair comparison, in
line with previous studies [3, 6–9], we evaluated the effec-
tiveness of our Point Mamba Adapter (PMA) on tasks such
as classification, part segmentation, and few-shot learning.
The training configurations for all downstream tasks, in-
cluding learning rate, optimizer, loss function, and data aug-
mentation strategies, were kept consistent with the default
settings of the original works. All experiments involving
Point-BERT and Point-MAE were conducted on a single
RTX 3090 GPU (24GB), while experiments with PointGPT-
L were conducted on a single A800 GPU.

2. Additional Ablation Study

2.1. Layer-Specific G2PG
In our experiments, the Geometry-constrained Gate Prompt
Generator (G2PG) produces gate prompts to adjust the out-
put matrix of the Mamba Adapter and generates index se-
quences for reordering layer tokens. This facilitates more
effective integration of spatial information, thereby enhanc-
ing the model’s ability to process point cloud data.

By default, we use a shared G2PG across different layers
to enable efficient fine-tuning, thus minimizing the intro-
duction of additional parameters. In fact, we can also use
a layer-specific G2PG, which would increase the parameter
count to some extent. In this section, we conduct further
experiments to investigate the impact of this approach on
performance.

# TP OBJ-BG OBJ-ONLY

layer-shared 1.05 91.05 90.89
layer-specific 1.71 91.48 91.05

Table 1. The effect of layer-specific G2PG.

Table 1 reports our experimental results. By introducing
the layer-specific G2PG, we observed a certain performance
improvement on both the OBJ-BG and OBJ-ONLY variants

of the ScanObjectNN [4] dataset. However, the improve-
ment was not substantial, and this layer-specific approach
also led to an increase in both parameter count and compu-
tational complexity. Therefore, in our experiments, we de-
fault to using the layer-shared G2PG to improve efficiency.
Of course, the layer-specific G2PG serves as a variant of our
method.

2.2. The Effect of Geometric Constraints in G2PG

# TP OBJ-BG OBJ-ONLY

MLP 1.03 90.36 90.19
Attention 1.62 90.53 90.19
Mamba 1.64 90.71 90.53
Geometry-constrained MLP 1.05 91.05 90.89

Table 2. The Effect of Geometric Constraints in G2PG

We further analyzed the importance of applying geomet-
ric constraints in G2PG. By default, we utilized a geometry-
constrained MLP architecture to generate prompts. Addi-
tionally, we examined the impact of generating prompts us-
ing only MLP, a Self-Attention-based architecture [5], and
the Mamba architecture [2] on the final performance. When
using only MLP, no token interaction occurs, providing no
guidance for the generated prompts. In contrast, the Self-
Attention mechanism enforces feature constraints through
attention-based interactions, while the Mamba architecture
relies on sequential dependencies to impose constraints.

Table 2 reports our experimental results and the experi-
mental results demonstrate that the combination of geomet-
ric constraints and an MLP architecture achieves the best
performance, followed by the Mamba-based architecture,
the Self-Attention-based architecture, and finally the plain
MLP. This can be attributed to that the generated prompts
influence the Mamba Adapter’s output gates, guiding spa-
tial feature perception. Geometric constraints + MLP yield
the best results by embedding explicit spatial guidance, en-
abling precise gating adjustments. Mamba-based prompts
leverage sequential dependencies for hierarchical model-
ing but are less effective in fine-grained geometry. Self-
Attention-based prompts emphasize global patterns but lack
spatial specificity, leading to suboptimal gating. Plain MLP
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prompts lack interaction and spatial awareness, offering
minimal guidance. Overall, geometric constraint integra-
tion proves most effective for adaptive and precise gating.

2.3. The Effect of Different Intermediate Layer Fea-
tures

Figure 1. The effect of different intermediate layer features.

We further analyzed the impact of using intermediate
features from different layers on the final performance. In
our experiments, we defaulted to using the intermediate fea-
tures from the first N-1 layers (N=12) as input to the down-
stream task head. We then investigated the performance
when using the features from the first 1, 3, 5, up to 11 layers
to explore how the number of intermediate features influ-
ences the final performance.

Figure 1 shows our experimental results, which indicate
that as the number of intermediate layers increases, perfor-
mance consistently improves in both the OBJ-BG and OBJ-
ONLY variants. This trend suggests that the interaction of
more intermediate layer features contributes to further gains
in performance. The only exception is the performance at
the 9-th layer of OBJ-ONLY, which surpasses the perfor-
mance of the 11-th layer. This anomaly reinforces our hy-
pothesis that intermediate layer features may contain richer
information than the final layer features, further supporting
our findings.

2.4. Comparison with Scale-up Segmentation Head
We compare full fine-tuning (FFT), Vanilla Head Tuning
(HT), scale up Head Tuning (Scale HT), and our PMA
with different heads. As shown in Table 3, FFT signifi-
cantly outperforms HT in mIoUI by 1.1%. Further scal-
ing up the head parameters also improves performance,
highlighting the effectiveness of more trainable parameters.
However, compared to Scale HT (only scaled Head), PMA
(PMA+G2PG+Vanilla Head) achieves a more substantial
improvement (0.9% in mIoUI ) with fewer parameters by
leveraging intermediate feature fusion, demonstrating the
superiority of our approach. Additionally, PMA combined
with the scaled head achieves further improvements.

2.5. The Effect of Different Fusion Methods
As shown in Table 4, we compare different PEFT meth-
ods (IDPT, DAPT) and various order-agnostic fusion meth-

Tuning Strategy #TP (M) mIoUC mIoUI

FFT (baseline) 27.06 84.2 86.1
Head Tune (HT) 5.24 83.1 85.0
Scale HT 5.71 83.3 85.2
IDPT 5.69 83.8 85.7
DAPT 5.65 84.0 85.7
PMA 5.64 84.0 86.1
PMA+Scale HT 6.10 84.4 86.1

Table 3. The results of scale-up segmentation head.

Fusion Methods #TP (M) GFLOPs ScanObjectNN

IDPT 1.7 7.3 84.94
DAPT 1.1 5.2 85.08
Pooling 0.4 4.9 79.39
MLPs 1.0 5.8 83.78
GCN 1.3 11.7 84.87
PMA 1.1 6.8 86.43

Table 4. The effect of different fusion methods.

ods (Pooling, MLPs, GCN) with our PMA in terms of ef-
ficiency and performance. Our PMA achieves the optimal
efficiency-performance trade-off, benefiting from the linear
complexity of Mamba during inference.

2.6. The Effect of Layer-wise Reorder

Gate Prompt Order OBJ-BG OBJ-ONLY

✘ ✘ 89.69 88.57
✘ fixed 89.82 88.74
✘ layer-wise 90.08 89.26
✔ ✘ 90.62 89.69
✔ fixed 90.87 90.17
✔ layer-wise 91.05 90.89

Table 5. The effect of layer-wise reorder.

The ordered point cloud patches generated by G2PG fol-
low spatial locality to some extent. The different orderings
at each layer can be regarded as order of the complete 3D
geometry from different direction. By integrating multiple
direction, we achieve a more comprehensive understanding
of the 3D structure. Therefore, our layer-wise sorting is to
enhance the model’s overall perception of 3D point cloud
spatial relationships by incorporating the orderings from
different directions across multiple feature layers, thereby
addressing the isotropic nature of 3D space. We also pro-
vide a more detailed comparative experiment on different
orderings on Table 5. ”fixed” refers to using only the first-
layer index generated by G2PG across all layers.
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