
StarGen: A Spatiotemporal Autoregression Framework with Video Diffusion
Model for Scalable and Controllable Scene Generation

Supplementary Material

1. Network Architecture

We provide the pseudo code in Algorithm 1 to give a
detailed explanation of the network architecture for the
proposed Spatiotemporal-Conditioned Video Generation
(SCVG).

2. Additional Training Details

We train our model using the AdamW [16] optimizer with
a learning rate of 0.0004. To accelerate the training pro-
cess, we employ xFormers [9] and mixed-precision [17]
techniques. When projecting reconstructed latent features
from the spatial conditioning images onto novel views, cer-
tain areas in the novel views may not be visible in the spatial
conditioning images, resulting in regions without projec-
tions. During the loss calculation, we mask these regions
to prevent them from influencing the loss. Our backbone is
based on CogVideoX [27], with the T5 model [18] serving
as the text encoder. Since the training datasets—RealEstate-
10K [32], ACID [14] and DL3DV [13]—do not provide
captions, we use PLLAVA [26] to generate captions for each
video clip.

3. Downstream Tasks Details

3.1. Sparse View Interpolation
Method Details. We provide a detailed explanation of gen-
erating a long-range video in scenarios where the first and
last input images have minimal or no overlap. Given two
input image Ifirst and Ilast, we invoke the proposed SCVG to
generate the image sequence x = {x0, . . . , xL−1}. To in-
terpolate those sparse frames to a long dense video, we uni-
formly sample m + 1 frames {xi0 , xi1 , . . . , xim} from the
first-pass result and process the second video generation.
In the second-pass process, each pair of adjacent frames
(xij , xij+1

) serves as the input of SCVG and generate L
novel views, resulting a long final video. By adjusting the
value of m, we can control the length of the final generated
video.
Experiment Details. To ensure a fair comparison with Re-
conX [15] (32 frames) and ViewCrafter [29] (25 frames),
we set the generated video length to 33 frames. This choice
is also influenced by the limitation of the CogVideoX [27]
3D VAE, which only supports videos with 4n + 1 frames.
We filter the training datasets from RealEstate-10K, ACID,
and DL3DV-10K to include only videos with at least 33
frames. Furthermore, we remove videos that could not be

Algorithm 1 Pseudo code of the proposed SCVG.
# Input list:
# spatial_images: [b, 2, h, w, 3]; b is the batch

size; the spatial_images are two spatial
conditioning images; h and w are the height
and width

# temporal_images: [b, 1, h, w, 3]; the temporal
conditioning image is the last temporal image
of the previous prediction output;

# text_prompt
# spatial_extrinsics: [b, 2, 4, 4]; the extrinsic

parameters of the three input images.
# spatial_intrinsics: [b, 2, 4]; the intrinsic

parameters of the three input images.
# out_extrinsics: [b, n, 4, 4]; the extrinsic

parameters. n is the frame count.
# out_intrinsics: [b, n, 4]; the intrinsic

parameters.
#
# Output list:
# video: [b, n, h, w, 3]

# LRM
depths = DepthAnythingV2(spatial_images) # [b, 2,

h, w, 1]
rays_os, rays_ds = get_rays(h, w,

spatial_intrinsics, spatial_extrinsics) #
rays_origin, rays_direction: [b, 2, h, w, 3]

x = concat([spatial_images, depths, rays_ds,
cross(rays_os, rays_ds)], dim=-1) # [b, 2, h,
w, 10]

x = conv(x, out=d, kernel=8, stride=8) # patchify
to [b, 2, h/8, w/8, d]

x = x.reshape(b, -1, d) # transformer input [b, 2
* h/8 * w/8, d]

x = transformer(LN(x))
x = LN(x)
x = x.reshape(b*2, h//8, w//8, d)
x = deconv(x, out=17, kernel=8, stride=8) # [b,

2, h, w, 17]
x = x.reshape(b, -1, 17) # [b, 2 * h * w, 17]
distance, feature = split(x, [1, 16], dim=-1)
w = sigmoid(distance)
point_cloud = rays_o + rays_d * (near * (1 - w) +

far * w)

# Render spatial condition
feature_map = render(point_cloud, feature,

out_extrinsic, out_intrinsic) # render
feature maps from point cloud with features
based on the camera’s intrinsic and extrinsic
parameters [b, n, h/8, w/8, 16]

# Video Diffusion Model
spatial_latents = causalConv3d(feature_map) # [b,

n/4, h/8, w/8, 16]
temporal_latents = vae_encode(temporal_images) #[

b, 1, h/8, w/8, 16]
control_latents = concat([temporal_latents,

spatial_latents[:,1:]], dim=1) # [b, n/4, h
/8, w/8, 16]

latents = CogVideoX(noise, Controlnet(
control_latents), text_prompt) # [b, n/4, h
/8, w/8, 16]

video = vae_decode(latents)

return video

downloaded and those where the pose counts did not match
the frame counts. After these steps, a total of 66,859 videos
remain in the final training dataset. For evaluation, we se-
lect 100 videos from the test sets of RealEstate-10K and
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ACID. Following previous methods [3, 5, 15], we calculate
the evaluation metrics using three frames per clip, specifi-
cally the 5th, 15th, and 25th frames.

3.2. Perpetual View Generation
Method Details. Given the first image Ifirst and a pose
trajectory, we invoke the proposed SCVG Algorithm 1 in
an autoregressive manner to generate a sequence of novel
views. In generating the first clip, the input image Ifirst
is duplicated to create paired spatial conditioning images
for SCVG, aligning with the zero-shot novel view synthesis
task in ViewCrafter [29]. Note that depth predictions from
identical images can suffer from scale ambiguity. To align
different methods to the same scale for fair comparison, we
use DUSt3R [20] to calculate the mean depth of the first
image as a reference. We then align the mean depth of the
first image from each method to this reference scale. In the
subsequent clip generation, we simply use the first and last
frames of the previously generated clip as the spatial condi-
tioning pair. More sophisticated frame selection strategies
can also be employed as alternatives.
Experiment Details. Apart from using the datasets de-
tailed in Sec. 3.1, we also evaluate perpetual view gener-
ation on the Tanks-and-Temples dataset [8] to further vali-
date its generalization capabilities. We use 6 scenes from its
test set without utilizing any training data from Tanks-and-
Temples.

3.3. Layout-Conditioned City Generation
Method Details. As described in the main paper, we adopt
a two-stage approach, primarily integrating different Con-
trolNets. The semantic ControlNet output is denoted as Cs,
the depth ControlNet output is Cd, and the output of our
SCVG ControlNet, as described in Algorithm 1, is Cscvg .
We combine different ControlNets by linearly weighting
their output features. The weighted and combined features
are then added to each block of CogVideoX to produce the
output video. The distinction between the two stages lies in
the combination of these ControlNets. In the first stage, the
features are combined as α1C

s + β1C
d, while in the sec-

ond stage, they are combined as α2C
s + β2C

d + γ2C
scvg .

In our experiments, α1 and β1 are both set to 0.5, while α2

and β2 are set to 0.3, and γ2 is set to 0.4.
Experiment Details. In this task, we additionally utilize the
CityGen dataset from CityDreamer [23], which comprises
city layout maps derived from OpenStreetMap [2] and ren-
derings generated by Google Earth Studio [1]. Each trajec-
tory in this dataset contains only 60 frames, while spanning
a large scene with a radius of approximately 400 meters,
leading to very sparse frame intervals. To address this is-
sue, we use Google Earth Studio to perform frame interpo-
lation on the original trajectories, increasing the number of
frames per trajectory to 600. We observe that Google Earth

Studio’s mesh-based representation introduces inconsisten-
cies due to misalignment or lighting changes among the im-
ages used for mesh reconstruction, leading to artifacts in the
training data. For instance, distortions in zebra crossings are
frequently observed in the training data. We observe that the
artifacts in the training data impact the learning process, as
our model also learns and replicates these distortions during
training. Despite this, compared to CityDreamer trained on
the same data, our model produces significantly better re-
sults.

4. Evaluation Details

4.1. Baselines
The quantitative results for pixelNeRF [28], GPNR [19],
AttnRend [4], and MuRF [24] are sourced from the MVS-
plat paper [5]. The results for pixelSplat [3], MVSplat,
GS-LRM [30], DepthSplat [25], and ReconX [15] are
taken from their respective original papers. DepthSplat
is not evaluated on ACID due to the lack of a released
model trained on this dataset. The quantitative results for
ViewCrafter [29], InfNat0 [12], LucidDreamer [6], Mo-
tionCtrl [22], and CityDreamer [23], as well as all qual-
itative results for each method, are reproduced using their
publicly available code.

InfNat0 first resizes input images to 384× 384 and then
crops them to 256×256. MotionCtrl resizes images propor-
tionally to a 1024-pixel short side, followed by cropping to
1024× 576. We adhere to their default configurations. For
LucidDreamer, we crop the input images to square dimen-
sions and resize them to 512×512. LucidDreamer supports
only predefined camera intrinsics and pose trajectories. We
modify the code to accommodate input camera control.
Additionally, as LucidDreamer does not support long text
prompts, we use text prompts generated with LAVIS [11]
as specified in their original paper. For ViewCrafter, the
images are first cropped to square dimensions and then re-
sized to 512×288 to avoid further cropping in ViewCrafter.
Since DUSt3R [20] re-estimates camera intrinsics and ex-
trinsics, the resizing process has minimal impact on the fi-
nal results. In perpetual view generation, the necessary code
for point cloud stitching is not released. We implement this
functionality based on the paper’s description. For the task
of layout-conditioned city generation, the results for City-
Dreamer are obtained by bypassing their unbounded layout
generator and instead using our selected layout maps and
the same trajectories as input.

4.2. Metrics
Short-Range Video Quality. For sparse view interpola-
tion and short-range perpetual view generation, we use the
PSNR, SSIM [21] and LPIPS [31] to measure the similarity
between generated and groundtruth images. Since differ-
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Figure 1. The reconstruction scenes of the generated videos: the reconstruction scene of single image generated video (the first row); the
scene result interpolated from three images(the second row); the scene result interpolated from six images(the third row).

ent methods for comparison may operate at different res-
olutions, we consistently resize both the groundtruth and
generated images to 256× 256 for a fair comparison.

Long-Range Video Quality. For long-range perpetual
view generation, since the output video contains a large
amount of generated content, we calculate Fréchet Incep-
tion Distance (FID) [7] to assess the performance. For con-
sistent evaluation of generated videos with different lengths,
we use a fixed number of images in each FID calculation.
Specifically, when calculating FID for generated videos
with different lengths, we sample different numbers of clips
from the test set to ensure that the total number of frames
for each calculation is 5000. Again, we resize both the
groundtruth and generated images to 256 × 256 for a fair
comparison.

Pose Accurancy. We evaluate the pose-control ability of
different methods by comparing the groundtruth poses with
estimated poses of the generated images. In our experi-
ments, we use MASt3R [10] to estimate poses as it is more
robust than traditional methods. After the pose estimation,
we transform the estimated pose to the GT coordinate sys-
tem and align the scale for evaluation. Specifically, we first
transform the estimated trajectory by aligning the first cam-
era pose to groundtruth, then calculate the scale factor by
comparing the lengths of groundtruth and estimated trajec-
tories, and finally apply the scale factor to the estimated tra-
jectories. We calculate the average rotation error Rdist and

translation error Tdist by:

Rdist =
1

n

n∑
i=1

arccos

(
tr(Ri

genR
iT
gt )− 1

2

)
,

Tdist =
1

n

n∑
i=1

∥∥Ti
gt −Ti

gen

∥∥
2
,

(1)

where Ri
gen and Ti

gen are the rotation and translation esti-
mated from the generated video corresponding to the i-th
frame, while Ri

gt and Ti
gt are the groundtruth.

For the evaluation of long-range video , considering the
computational efficiency of MASt3R, the cost of recover-
ing all frames would be unbearable. Therefore, we only
estimate the poses of keyframes for evaluation. We se-
lect one keyframe from every tenth frame in the first 200
frames of the generated videos, resulting in 21 keyframes
(0, 10, ..., 200).

5. Reconstruction Results
To further demonstrate the temporal consistency of the long
videos generated by the proposed method, we employed
COLMAP to perform sparse reconstruction on the gener-
ated video sequences and subsequently trained a 3D Gaus-
sian Splatting (3DGS) model. As illustrated in Fig. 1, both
the sparse reconstruction results and the rendered outputs
indicate that the generated videos exhibit excellent multi-
view consistency, which significantly facilitates the recon-
struction of large-scale scenes. This consistency not only
validates the robustness of our method but also highlights
its potential for applications requiring high-fidelity scene
reconstruction and rendering.
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Method part (a) part (b) backbone FID↓ Rdist↓ Tdist↓
Ours LRM CN CogVideo 41.72 2.088 0.453
DUSt3R+CN DUSt3R CN CogVideo 55.14 2.580 0.694
DUSt3R+Concat DUSt3R Concat CogVideo 51.40 2.739 0.716
ViewCrafter DUSt3R Concat DynamicCrafter 62.91 11.32 0.86

Table 1. Ablation results for different module combinations.

6. Effect of VDM backbone
To ensure a fair comparison with ViewCrafter, we reimple-
mented its modules using the same CogVideo backbone,
eliminating backbone-related discrepancies. The key differ-
ences between StarGen and ViewCrafter are: (a) For novel
view conditioning, StarGen uses an LRM for latent fea-
ture reconstruction, while ViewCrafter relies on DUSt3R
for RGB point cloud reconstruction; (b) StarGen employs
ControlNet for condition injection, whereas ViewCrafter
uses concatenation. We evaluated different module com-
binations under identical experimental settings (Section
4.3, long-range video), benchmarking performance on the
RealEstate-10K dataset. As shown in Tab. 1, our proposed
method demonstrates significant advantages even under the
same backbone.
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