
Real-time High-fidelity Gaussian Human Avatars with
Position-based Interpolation of Spatially Distributed MLPs

Supplementary Material

1. More Implementation Details

Template Mesh. For the canonical template mesh used in
our method, we use SMPL-X [2] mesh as the template mesh
for avatars wearing tight clothing, and follow Animatable-
Gaussians [1] to obtain template mesh for avatars wearing
loose clothing.
Spatially Distributed MLPs. The spatially distributed
MLP contains four hidden layers with 512, 256, 256, 256
neurons respectively. Each spatially distributed MLP takes
only pose vector as input and outputs coefficients of length
2B = 30. Half of the coefficients are interpolated by Gaus-
sians to obtain Gaussian coefficients, while the other half
are interpolated by control points to obtain control point co-
efficients.

For the implementation details, we use the new vmap
function in Pytorch 2.0 for the parallel processing of multi-
ple spatially distributed MLPs. The vmap function allows
running models (e.g., MLPs and CNNs) with the same ar-
chitecture in parallel. Specifically, we convert the MLP
to a function (line 6 in Code 1), and then vmap runs
the function with the batched weights and tensors as input
(line 8 in Code 1). Please refer to the official document
pytorch.org/tutorials/intermediate/ensembling.html for
more details.

We also compare the forward time of vmap with group
1D convolution, which was used in SLRF [3] to run multiple
MLPs in parallel. We run 1000 iterations and report the
average time. The vmap implementation takes 0.52ms, and
is much faster than the group convolution (3.70ms).
Training Details. At the beginning of training, we only op-
timize Gaussian neutral properties and neural position off-
sets. After 2K iterations, we optimize property offset ba-
sis and position offset basis, as well as spatially distributed
MLPs. We also optimize only the zero-order component
of the SH coefficients at the beginning. The first-order SH
coefficients are optimized after 250K iterations.

1 from torch.func import vmap, functional_call,
stack_module_state

2 models = [MLP(in=63,out=30) for _ in range(300)]
3 weights, _ = stack_module_state(models)
4 base_model = MLP(in=63,out=30).to("meta")
5 def fmodel(param, data):
6 return functional_call(base_model, param, data)
7 input_tensor = torch.tile(pose_vector, [300, 1])
8 output_tensor = vmap(fmodel)(weights, input_tensor)
9 # output tensor shape: (300, 30)

Code 1. Sample code for processing multiple MLPs in parallel.

50K

100K

200K

300K

Figure 1. Qualitative comparison of different number of Guas-
sians.

GS number PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ Training ↓ FPS ↑
50K 32.6020 0.9858 0.0244 10.7696 15.0 h 332
100K 32.6833 0.9863 0.0232 10.3303 15.8 h 246
200K 32.7456 0.9868 0.0226 10.1169 17.5 h 166
300K 32.7626 0.9869 0.0224 10.0621 19.0 h 129

Table 1. Quantitative comparison of different number of Gaus-
sians.

2. Experiment Details

In the main paper, the quantitative results in Tab. 1, Tab. 4,
Tab. 5, and Tab. 6 are evaluated on avatarrex zzr sequence
from AvatarRex [4] dataset. We use the first 2000 frames
for training and calculate metrics on the first 500 frames
from “22010710” camera view. The quantitative results in
Tab. 2 of the main paper are evaluated on subject00 se-
quence from THuman4.0 [3] dataset. We use the first 2000
frames for training and calculate metrics on the remaining
500 frames from “cam18” camera view.

3. Ablation Study on Gaussian Number

We conduct experiments on the number of Gaussians used
in our method. Quantitative experiments are shown in
Tab. 1. Although reducing the number of Gaussians can
greatly improve rendering speed, we find that fewer Gaus-
sians make it more difficult to accurately capture details, as
shown in Fig. 1. Therefore, we empirically choose 200K
Gaussians in our method.

4. Ablation Study on PCA Components

1



We use 20 PCA components during testing. Fig. 2 shows
the results of using different numbers of components and
no PCA. The left results show that using fewer PCA com-
ponents yields fewer details. The right results show that
artifacts can appear when no PCA is used.

PCA-20

no PCAPCA-5 PCA-10 PCA-20 no PCA

Figure 2. Ablation study on PCA components.

References
[1] Zhe Li, Zerong Zheng, Lizhen Wang, and Yebin Liu. Ani-

matable gaussians: Learning pose-dependent gaussian maps
for high-fidelity human avatar modeling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19711–19722, 2024. 1

[2] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed AA Osman, Dimitrios Tzionas, and
Michael J Black. Expressive body capture: 3d hands, face, and
body from a single image. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages
10975–10985, 2019. 1

[3] Zerong Zheng, Han Huang, Tao Yu, Hongwen Zhang, Yan-
dong Guo, and Yebin Liu. Structured local radiance fields
for human avatar modeling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 15893–15903, 2022. 1

[4] Zerong Zheng, Xiaochen Zhao, Hongwen Zhang, Boning Liu,
and Yebin Liu. Avatarrex: Real-time expressive full-body
avatars. ACM Transactions on Graphics (TOG), 42(4):1–19,
2023. 1

2


	More Implementation Details
	Experiment Details
	Ablation Study on Gaussian Number
	Ablation Study on PCA Components

