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A. Implementation Details
SSM. For a fair comparison, we use a single SSM-based
block with a 128-dimensional SSM and set the state dimen-
sion to 16 for all Mamba-based methods.
Feature extractor. We use UNI [6], a well-known and cur-
rent SOTA foundation model for feature extraction, which is
a ViT-L/16 pretrained on more than 100 million pathology
patches from from over 100,000 H&E-stained WSIs across
20 major tissue types. UNI is pretrained in a self-supervised
manner using DINOv2 [35].
Aggregator. The aggregator in our 2DMamba follows
[17, 43] using attention pooling [17] and two linear layers
(128 intermediate dimensions). This module produce the
attention scores of each patch embedding, then aggregate
them using the weighted summation to produce the WSI
embedding. Mathematically, let H = {h1, . . . , hK} be a
bag of K embeddings, the attention pooling is:

z =

K∑
k=1

akhk, (9)

where:
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j

)
}

, (10)

where w ∈ R128×1 and V ∈ R128×M are parameters (M
is the embedding dimension). For fair comparisons, we use
the same feature extractor and aggregator as other MILs.
WSI pre-processing. We extract patches from WSIs at 20x
magnification with no overlapping. The patch size is set to
512x512 pixels. We used the preprocessing tool in CLAM
[29] to segment and extract tissue regions.
Training. We use AdamW [28] to optimize the models for
20 epochs of training with batch size being 1. The initial
learning rate is set to 0.0001 and is adjusted with a cosine
annealing scheduler. All pathology and natural image ex-
periments are trained using one NVIDIA V100 GPU and
eight NVIDIA A100 GPUs, respectively.

B. Details of the hardware-aware 2D selective
scan operator

In this section, we detail the hardware-aware 2D selective
scan operator in 2DMamba introduced in section 3.4. The
forward pass of the 2D selective scan, implemented as a

fused kernel with 2D tiling, is formulated in the algorithm
below. The backward pass of 2DMamba follows a similar
structure but involves four 2D selective scans: one horizon-
tal and one vertical scan to reconstruct intermediate vari-
ables from the forward pass, and one horizontal reverse and
one vertical reverse scan to propagate gradients.

Algorithm 2D selective scan (fused kernel with tiling)

Require: 2D input feature x : (H,W ); Time step ∆ : (H,W );
Require: State dimension N . Tile size T .
SSM parameters: Input independent A : (N), D and bias;
SSM parameters: Input dependent B : (H,W );
SSM parameters: Input dependent C : (H,W ).
Return: 2D aggregated result y.

KH = ⌈H/T ⌉
KW = ⌈W/T ⌉
# loop for KH ∗KW tiles
for kh = 1 to KH and kw = 1 to KW do

xkh,kw : (T, T ) = Read from HBM.
∆kh,kw : (T, T ) Read from HBM.
∆x = softplus(∆ ∗ xkh,kw + bias)
ykh,kw = 0
# loop for N state dimensions
for d = 1 to N do

Ad = Read from HBM.
Bd

kh,kw
= Read from HBM.

Cd
kh,kw

= Read from HBM.
Bd

∆x = Bd ∗∆ ∗ xkh,kw

Ad
∆ = Ad ∗∆x

# Initialize horizontal and vertical prefix
Ph = Read Ph

kh,kw−1 from HBM.
P v = Read Ph

kh−1,kw
from HBM.

Initialize y = 0
hhor,d = parallel horizontal scan(Ad

∆, Bd
∆x, Ph)

Write last column of hhor,d as Ph
kh,kw

to HBM.
hd = parallel vertical scan(Ad

∆, hhor,d, P v)
Write last row of hd as P v

kh,kw
to HBM.

ykh,kw = ykh,kw + Cd ∗ hd

end for ▷ End N states
ykh,kw = ykh,kw +D ∗ xkh,kw

Write ykh,kw to HBM.
end for ▷ End tiles

Memory access complexity. In the algorithm, we use T to
denote the height and width of a tile, and KH , KW to repre-
sent the number of tiles along height and width dimensions.
Thus, we have H = Kh×T and W = Kw×T . We also as-
sume N = O(H+W ). We further use green color to high-
light the extra HBM transactions of 2DMamba compared



to the vanilla Mamba. Specifically, for each tile, an extra
row and column for every state dimension must be read and
written to concatenate tiles. This adds an extra memory ac-
cess complexity of O(NT ) per tile. The total extra mem-
ory access complexity is therefore Kh ×Kw × O(NT ) =
O(N(H + W )). Since we assume N = O(H + W ), this
simplifies to O(H×W ) = O(L), where L the the sequence
length. Thus, the extra memory access complexity matches
that of vanilla Mamba, ensuring the total memory access
complexity remains O(L).

Correctness. The 2D scan is decomposed into a horizontal
scan and a vertical scan, which are performed sequentially.
That is, we first conduct the horizontal scan, and after it’s
done, we then conduct the vertical scan. However, each
scan itself is conducted by a GPU scanner in parallel, en-
suring the overall efficiency. This sequential process guar-
antees the correctness of the decomposition. Meanwhile,
the correctness of the 1D parallel scan algorithm is elabo-
rated by the vanilla Mamba.

Tiling and edge cases. We choose two grid tile sizes:
16×16 and 32×32. Feature maps smaller than 32×32 are
processed directly without tiling. Larger feature maps are
tiled into 32 × 32 blocks. This tile size is chosen manually
to balance between runtime efficiency and hardware con-
straints: While a larger tile size brings in higher parallelism,
it comes with the cost of increased register and SRAM con-
sumption. An excessive grid size will result in register
spills, which will severely penalize performance. Follow-
ing vanilla Mamba [15]’s practice, our current choice is the
trade-off between parallelism and register spills. The tiles
are processed sequentially, from top left to bottom right.
This process is similar to conducting a 2D convolution over
the input feature map, with kernel size equal to our tile size,
and stride equal to 16 or 32. For input sizes that are not
perfect multiples of our tile size, we pad the “spilling” ar-
eas with naive values Ā = 1 and x = 0, which is also the
strategy of the vanilla Mamba scanner.

Thread granularity and load balancing. Each feature
map is processed with 64 threads, which properly respects
the 32-thread granularity. For tile size 16× 16, each thread
processes a 2 × 2 subregion; for 32 × 32, each thread pro-
cesses a 4 × 4 subregion. Accordingly, all threads process
the same amount of data so load imbalances are not an is-
sue.

Difference with other hardware-optimized methods.
To the best of our knowledge, all currently available
hardware-optimized Mamba-based methods rely on the
vanilla Mamba scanner and its CUDA pipeline, which con-
duct 1D scans (2D input must be flattened into 1D sequence
to be processed). In contrast, 2DMamba conducts 2D scans
(without the need to flatten the input) and make novel mod-
ifications to the CUDA part for the best efficiency.

C. Mathematical derivations of 2DMamba
We formulate 2D scanning in a manner similar to Mamba
[15] for efficient parallelism. To achieve the spatial conti-
nuity in Eq. (7), we first scan row-wise in Eq. (5) and get

hhor
i,j =

∑
j′≤j

Ā(j−j′)B̄xi,j′ (The vanilla Mamba) (11)

We then scan column-wise as Eq.(6):

hi,j = Āhi−1,j + xhor
i,j (12)

= Āhi−1,j + B̄′xhor
i,j (B̄′ = I) (13)

=
∑
i′≤i

Ā(i−i′)B̄′hhor
i′,j (The vanilla Mamba) (14)

=
∑
i′≤i

Ā(i−i′)
∑
j′≤j

Ā(j−j′)B̄xi′,j′ (B̄′ = I) (15)

=
∑
i′≤i

∑
j′≤j

Ā(i−i′+j−j′)B̄xi′,j′ (Eq.(7)) (16)

D. Details of WSI datasets
Breast invasive carcinoma subtyping on BRACS and
TCGA-BRCA. BRACS [3] includes 547 H&E breast
carcinoma WSIs collected from 187 patients. There are
3 classes: benign tumor (265 slides), atypical tumor (89
slides), or malignant tumor (193 slides). We used the
official train–validation–test split with a ratio of 395:65:87
slides. TCGA-BRCA comprise 1033 H&E WSIs with
2 subtypes: invasive ductal carcinoma (822 slides) and
invasive lobular carcinoma (211 slides). We follow [5]
to get the train–validation–test folds with the ratio of
841:96:96 slides.

Prostate cancer grading based on PANDA. The dataset
[4] consists of 10,614 digitized prostate cancer biopsies.
There are 6 categories: grade 0 (2890 slides), grade 1
(2666 slides),grade 2 (1343 slides), grade 3 (1242 slides),
grade 4 (1249 slides), or grade 5 (1224 slides). We
label-stratified PANDA into 80:10:10 train–validation–test
sets (8491:1061:1062 slides).

Renal cell carcinoma subtyping based on DHMC. The
dataset [50] include 563 H&E WSIs collected from 485
resections and 78 biopsies. The label includes 5 types:
clear cell renal cell carcinoma (344 slides), papillary renal
cell carcinoma (101 slides) and chromophobe renal cell
carcinoma (23 slides), renal oncocytoma (66 slides) and
benign (29 slides). We split the dataset into 393:23:147
slides for train, validation, and test sets.

Non-small cell lung carcinoma subtyping on TCGA-
NSCLC. The dataset include 957 H&E breast carcinoma



Feature size 14× 14 56× 56 200× 200
Scope Method FLOPs Thro. GPU Mem. FLOPs Thro. GPU Mem. FLOPs Thro. GPU Mem.

Mamba (CUDA) 63M 115 30 MB 1.0G 100 78 MB 12.9G 56 804 MB
MIL framework 2DMamba (Python) 72M 53 70 MB 1.2G 40 670 MB 14.7G 5 9110 MB

2DMamba (CUDA) 72M 110 30 MB 1.2G 88 102 MB 14.7G 49 912 MB

Table S1. Comparison of floating-point operations (FLOPs), throughput (Thro., feature maps per second), and GPU memory consumption
during training. MIL frameworks are measured using 128 dimensional feature input and the state dimension is set to 16 for all experiments.

WSIs, including 2 subtypes: lung adenocarcinoma (490
slides) and lung squamous cell carcinoma (468 slides).
We follow [5] to split the dataset into train–validation–test
folds with the ratio of 785:86:87 slides.

Survival prediction on TCGA-KIRC, TCGA-KIRP,
TCGA-LUAD, TCGA-STAD, and TCGA-UCEC. For
TCGA-KIRC (kidney renal clear cell carcinoma), the
dataset includes 498 slides, with 329 censored and 169 un-
censored samples, of which 300 WSIs are used for train-
ing and 100 for validation. The TCGA-KIRP dataset (kid-
ney renal papillary cell carcinoma) consists of 261 slides
(220 censored, 41 uncensored), with 208 WSIs for train-
ing and 53 for validation. In TCGA-LUAD (lung adeno-
carcinoma), there are 455 slides (159 censored, 296 uncen-
sored), split into 364 WSIs for training and 91 for valida-
tion. The TCGA-STAD dataset (stomach adenocarcinoma)
includes 363 slides, of which 145 are censored and 218 un-
censored, divided into 290 WSIs for training and 73 for val-
idation. Finally, the TCGA-UCEC dataset (uterine corpus
endometrial carcinoma) contains 539 slides (460 censored,
79 uncensored), with 431 WSIs allocated to training and
108 for validation. The 5-fold cross-validation splits for
each dataset were derived from [46].

E. Evaluation of speed and GPU memory effi-
ciency during training

In Tab. 3, we analyze speed and GPU memory efficiency
during inference; here, we evaluate the same metrics during
training, the floating-point operations (FLOPs), throughput,
and GPU memory consumption. Since the CUDA opera-
tors are identical for both training and inference, we fo-
cus on comparing the CUDA implementation of Mamba,
the Python implementation of 2DMamba, and the CUDA
implementation of 2DMambawithin the MIL framework,
across the three input feature sizes, 14 × 14, 56 × 56, and
200 × 200. As shown in Table S1, for all three sizes,
with 10% to 20% increases of FLOPs, our method achieves
throughput at approximately 90% of vanilla Mamba while
significantly outperforming the Python implementation of
2DMamba. In terms of GPU memory consumption, our
approach incurs only a slight increase compared to vanilla
Mamba while reducing memory usage by 57% to 90% com-

pared to the Python implementation of 2DMamba. These
results demonstrate that our hardware-aware 2D selective
scan operator remains both fast and GPU memory-efficient
during training.

F. Additional results on natural image classifi-
cation

In Tab. 4, we apply 2DMamba to the SOTA Mamba-based
method on natural images VMamba [26] and name it as
2DVMamba. Our results showed that 2DVMamba-T out-
performs all SOTA methods. In this section, we scale 2DV-
Mamba to its small version: 2DVMamba-S. As shown in
Table S2, similar to the improvements seen in the tiny ver-
sion, 2DVMamba-S surpasses VMamba-S by 0.2% with a
negligible increase in FLOPs (0.1G). It also outperforms
all current SOTA methods, demonstrating that our approach
scales effectively to larger models.

Method #Param FLOPs Top-1 Acc%

DeiT-S 22M 4.6G 79.8
Swin-T 28M 4.5G 81.3
Vim-S 26M - 80.3
EfficientVMamba-B 33M 4.0G 81.8
LocalVMamba-T 26M 5.7G 82.7
VMamba-T 30M 4.91G 82.6

2DVMamba-T 30M 4.94G 82.8
DeiT-B 86M 17.5G 81.8
Swin-S 50M 8.7G 83.0
LocalVMamba-S 50M 11.4G 83.7
VMamba-S 50M 8.7G 83.6

2DVMamba-S 50M 8.8G 83.8

Table S2. The top-1 accuracy (%) of our 2DVMamba on the
ImageNet-1K dataset. All images are of size 224× 224.

G. Additional ablation studies
Parameter Ā reuse. In 2DMamba, Ā is reused for both
horizontal and vertical scan to maintain the same number
of parameters as the vanilla Mamba [15]. Although we
lack theoretical guarantees of optimality, our ablation stud-
ies in Tab. S3 demonstrate that 2DMambaMIL with inde-



Setting BRACS DHMC PANDA TCGA-NSCLC TCGA-BRCA
Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC

Independent Ā 0.7379 0.6786 0.8857 0.8935 0.8122 0.9410 0.4917 0.4466 0.8131 0.8851 0.8851 0.9577 0.9333 0.9124 0.9759
Reused Ā 0.7517 0.7045 0.8964 0.8926 0.8027 0.9468 0.5075 0.4562 0.8184 0.8851 0.8850 0.9618 0.9458 0.9156 0.9782

Table S3. Comparison of using independent and reused parameter Ā in the 2DMambaMIL. They achieve comparable performance.

pendent Ā achieves comparable performance (within ±1%)
to 2DMambaMIL with reused Ā across five datasets.

Positional embeddings (PE). We investigate the impact
of PE in Mamba-based MIL. We compare MambaMIL, SR-
MambaMIL, and 2DMambaMILwith and without PE on the
PANDA and TCGA-BRCA datasets. Due to the large size
of WSIs, absolute PE, as in [12], results in an excessive
number of parameters for MIL models. Instead, we adopt
a linear projection to map the 2D coordinates of each patch
into a PE and added to the patch embeddings to integrate
positional information. As shown in Table S4, incorporat-
ing PE generally improves the performance of 1D Mamba-
based methods, indicating the additional spatial information
helps mitigate spatial discrepancies. In contrast, adding PE
to our 2DMambaMIL reduces its performance. This de-
cline occurs because our 2D formulation effectively inte-
grates spatial information, making the additional PE redun-
dant.

Method PANDA TCGA-BRCA
Acc AUC Acc AUC

MambaMIL 0.4679 0.7781 0.9333 0.9657
MambaMIL-PE 0.4887 0.7976 0.9292 0.9705

SRMambaMIL 0.4711 0.7776 0.9313 0.9657
SRMambaMIL-PE 0.4774 0.7705 0.9333 0.9703

2D-MambaMIL 0.5075 0.8184 0.9458 0.9782
2D-MambaMIL-PE 0.4971 0.8083 0.9290 0.9765

Table S4. The native 2D formulation of 2D-MambaMIL ob-
tains higher performance than integrating the positional embed-
ding (PE) into 1D-based models. Moreover, adding PE into 2D-
MambaMIL consistently decreases the performance.

Comparison with a naive 2D method. A naive 2D ap-
proach involves applying 1D Mamba independently to all
rows and then to all columns. We compare the performance
of our formulation with this naive 2D method. As shown
in Table S5, the naive approach is 1%-2% less accurate in
Accuracy and AUC on the PANDA and the TCGA-BRCA
datasets. Additionally, the naive method is 50% more com-
putationally expensive due to the padding of 14×14 tiles to
14× 32 or 32× 14, as discussed in Section 3.4.

2D scan PANDA TCGA-BRCA
Acc AUC Acc AUC

Naive 0.4856 0.8077 0.9333 0.9760
Ours 0.5075 0.8184 0.9458 0.9782

Table S5. The comparison of naive 2D approach and our 2DMam-
baMIL. The naive approach applies 1D Mamba independently to
all row and then all columns. Our 2DMambaMIL surpasses the
naive 2D approach.

2D scan order. We ablate the 2D scan order of our
2DMamba by comparing two different orders: Horizontal-
Vertical and Vertical-Horizontal. The results in Table S6
show that the two scan orders of 2DMamba achieve com-
parable performance on the PANDA and the TCGA-BRCA
datasets, with the average differences of 0.5% in accuracy
and 0.6% in AUC. This ablation shows that the scan or-
der does not have a large influence on the performance of
2DMamba.

2D scan order PANDA TCGA-BRCA
Acc AUC Acc AUC

Horizontal-Vertical 0.5075 0.8184 0.9458 0.9782
Vertical-Horizontal 0.5001 0.8141 0.9427 0.9707

Table S6. Ablation on the 2D scan order on the PANDA and
TCGA-BRCA dataset. The scan order does not have a large in-
fluence on the performance.

Number of blocks. We ablate using one, two and three
2DMamba blocks. Table S7 shows that employing one
2DMamba block achieves the overall best performance. A
single layer yields the highest performance in both accuracy
and AUC on the TCGA-BRCA dataset and yields the best
AUC with a slightly lower accuracy on the PANDA dataset.

Number of blocks U PANDA TCGA-BRCA
Acc AUC Acc AUC

1 0.5075 0.8184 0.9458 0.9782
2 0.5134 0.8153 0.9427 0.9778
3 0.5045 0.8178 0.9340 0.9558

Table S7. Ablation study on the number of 2DMamba blocks U
on the PANDA and TCGA-BRCA dataset.



Model dimension. We ablate the model dimensions of
2DMamba. Table S8 depicts that, a dimension of 128 gen-
erally provides the best performance on both the PANDA
and TCGA-BRCA datasets. Specifically, for the PANDA
dataset, increasing the dimension to 256 or 512 slightly im-
proves accuracy but results in a significant drop in AUC.
For the TCGA-BRCA dataset, the 128-dimension model
achieves the highest performance, with improvements of at
least 0.9% in accuracy and 0.7% in AUC.

Model dimension PANDA TCGA-BRCA
Acc AUC Acc AUC

32 0.4916 0.8073 0.9250 0.9745
64 0.4987 0.8066 0.9375 0.9713
128 0.5075 0.8184 0.9458 0.9782
256 0.5132 0.8072 0.9292 0.9671
512 0.5194 0.8067 0.9271 0.9678

Table S8. Ablation study on the model dimensions on the PANDA
and TCGA-BRCA dataset.

State dimension. We ablate the state dimension N of
2DMamba. Table S9 shows that using N = 16 provides
overall the highest performance in the PANDA and TCGA-
BRCA dataset. Particularly, setting N = 16 obtains the
highest AUC and the highest accuracy on TCGA-BRCA
datase. On the PANDA dataset, N = 16 obtains the highest
AUC and a slightly lower accuracy, compared with N = 32.
Thus, we set N = 16 for all our experiments.

State dimension N
PANDA TCGA-BRCA

Acc AUC Acc AUC

4 0.4999 0.8105 0.9271 0.9712
8 0.4970 0.8114 0.9354 0.9754

16 0.5075 0.8184 0.9458 0.9782
32 0.5121 0.8174 0.9271 0.9705
64 0.5040 0.8096 0.9375 0.9773

Table S9. Ablation study on the state dimension N on the PANDA
and TCGA-BRCA dataset.

H. Standard derivation
The metrics reported in Tab. 1 represent the means of five
runs conducted with different random seeds. The standard
derivations of these metrics are provided in Tab. S10. The
standard deviations of 2DMamba are generally comparable
to or smaller than those of other methods, demonstrating the
stability of the proposed approach.

I. Additional qualitative evaluation
In addition to the heatmaps of the TCGA-KIRC sample
shown in Fig. 4, we also analyze other samples for com-

prehensive qualitative evaluation. As shown in Fig. S1
to Fig. S6, overall, these generated heatmaps show that
2DMambaMIL consistently generates heatmaps that are
more logical than the other models. 2DMambaMIL high-
lights tumor features based on the task while others seem to
use features from both tumor and non-tumor, showing that
the model is non-specific or is tagging onto features that are
not truly biologically relevant. For classification purposes,
2DMambaMIL heatmaps consistently highlight tumor-area
pixels for classification. MambaMIL and CLAM are
slightly less specific, with pixels from non-tumor areas be-
ing more often used by the model. These three models
generate heatmaps that are more tumor-specific than AB-
MIL and SRMambaMIL, which also highlight non-tumor
features during the tumor classification task. For survival
prediction purposes, 2DMambaMIL also consistently used
tumor areas for survival prediction while also using some
pixels from the immediate tumor-adjacent areas. Interest-
ingly, the signal detection with 2DMambaMIL was hetero-
geneous within the tumor, with highly- and low-attended
areas of the tumor being highlighted, a feature less present
with MambaMIL and CLAM, and not achieved by AB-MIL
and SRMambaMIL. In addition, we also analyze the atten-
tion heatmap of 2DMambaMIL in high resolution patches.
As shown in Fig. S7, within tumor regions, our model dis-
tinguishes fine-grained regions of high and low mortality
that correspond to high-grade and low-grade tumors.



Method BRACS DHMC PANDA TCGA-NSCLC TCGA-BRCA
Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC

AB-MIL 0.0197 0.0178 0.0199 0.0231 0.0219 0.0273 0.0116 0.0139 0.0157 0.0104 0.0103 0.0208 0.0123 0.0145 0.0210
DSMIL 0.0185 0.0165 0.0210 0.0248 0.0220 0.0255 0.0118 0.0136 0.0161 0.0111 0.0111 0.0211 0.0132 0.0134 0.0201
CLAM 0.0229 0.0189 0.0221 0.0241 0.0258 0.0295 0.0141 0.0166 0.0184 0.0130 0.0129 0.0249 0.0131 0.0160 0.0268
DTFD-MIL 0.0254 0.0225 0.0255 0.0294 0.0274 0.0345 0.0148 0.0179 0.0197 0.0133 0.0132 0.0269 0.0158 0.0187 0.0267
TransMIL 0.0262 0.0236 0.0263 0.0310 0.0287 0.0367 0.0155 0.0181 0.0208 0.0138 0.0139 0.0274 0.0162 0.0190 0.0281

S4-MIL 0.0214 0.0209 0.0194 0.0223 0.0240 0.0246 0.0131 0.0139 0.0172 0.0116 0.0116 0.0189 0.0145 0.0134 0.0216
MambaMIL 0.0179 0.0193 0.0217 0.0229 0.0261 0.0328 0.0133 0.0144 0.0146 0.0104 0.0103 0.0249 0.0140 0.0132 0.0199
SRMambaMIL 0.0189 0.0168 0.0203 0.0232 0.0258 0.0232 0.0107 0.0147 0.0147 0.0117 0.0115 0.0192 0.0121 0.0139 0.0179

2DMambaMIL 0.0175 0.0184 0.0173 0.0209 0.0225 0.0227 0.0107 0.0132 0.0162 0.0102 0.0124 0.0205 0.0113 0.0139 0.0175

Table S10. The standard deviation of accuracy (Acc), F1 and AUC on five WSI classification datasets. We conducted each experiment five
times using five different random seeds and reported their standard deviations. The lowest values are marked as bold.

Figure S1. The attention visualization of 2DMambaMIL and four other methods on a TCGA-KIRP sample for survival analysis. Tumor
regions are outlined in green. Red arrows and violet arrows point to the highly survival relevant areas and non-tumor areas, respectively.
2DMambaMIL and MambaMIL use tumoral and peritumoral pixels to drive the model, consistent with the heterogeneous feature of the
distribution of high mortality predicting areas. By contrast, AB-MIL, CLAM, and SRMambaMIL are less specific, with high probability
areas being located randomly or in insignificant structures in the non-tumoral tissue. 2DMambaMIL slightly outperforms MambaMIL in
the heatmap distribution.



Figure S2. The attention visualization of 2DMambaMIL and four other methods on a TCGA-LUAD sample for survival analysis. Tumor
regions are outlined in green. Red arrows and violet arrows point to the highly survival relevant areas and survival irrelevant areas,
respectively. 2DMambaMIL and MambaMIL use tumoral and peritumoral pixels to drive the model, consistent with the heterogeneous
feature of the distribution of high mortality predicting areas. By contrast, AB-MIL, CLAM, and SRMambaMIL are less specific, with high
probability areas being located randomly or in insignificant structures in the non-tumoral tissue.

Figure S3. The attention visualization of 2DMambaMIL and four other methods on an IDC sample for TCGA-BRCA sub-typing. Tumor
regions are outlined in green. Red arrows and violet arrows point to the highly task-relevant areas and non-tumor areas, respectively.
2DMambaMIL and MambaMIL outperform the other models in qualitative specificity, as the background non-tumor tissue contains less
high-probability pixels. 2DMambaMIL slightly outperforms MambaMIL in the heatmap distribution.



Figure S4. The attention visualization of 2DMambaMIL and four other methods on a LUAD sample for TCGA-NSCLC sub-typing.
Tumor regions are outlined in green. Red arrows and violet arrows point to the highly task-relevant areas and non-tumor areas, respectively.
2DMambaMIL and MambaMIL outperform the other models in qualitative specificity, as the background non-tumor tissue contains fewer
high-probability pixels. 2DMambaMIL slightly outperforms MambaMIL in the heatmap distribution.

Figure S5. The attention visualization of 2DMambaMIL and four other methods on an ILC sample for TCGA-BRCA sub-typing. Tumor
regions are outlined in green. Red arrows and violet arrows point to the highly task-relevant areas and non-tumor areas, respectively.
2DMambaMIL and MambaMIL outperform the other models in qualitative specificity, as the background non-tumor tissue contains fewer
high-probability pixels.



Figure S6. The attention visualization of 2DMambaMIL and four other methods on a LUSC sample for TCGA-NSCLC sub-typing. Tumor
regions are outlined in green. Red arrows and violet arrows point to the highly task-relevant areas and less task-relevant areas, respectively.
2DMambaMIL and MambaMIL outperform the other models in qualitative specificity, as the background non-tumor tissue contains fewer
high-probability pixels.

Figure S7. Two critical patches (1 and 2) of a kidney cell clear cell carcinoma sample from the TCGA-KIRC overlaid with attention
heatmaps of 2DMambaMIL. The heatmaps of 2DMambaMIL heterogeneously show areas driving higher mortality and areas driving lower
mortality. Specifically, 2DMambaMIL focuses more on the red squares that are directly related to mortality in survival analysis and focuses
less on the blue squares that are less related to mortality. Areas in the red squares show features of high-grade disease (grade 2-3 pointed
by black arrowheads), notably areas of tumor cells with inconspicuous nucleoli. Areas in the blue squares show low-grade cytological
features (grade 1 pointed by black arrowheads).
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