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6. Proof

6.1. Proof of Theorem 2.1

Let fSi
, fT , fV : X → K denote the true labeling functions

on the source, unlabeled, and labeled target domains. Given

a distance metric ε that satisfies the triangle inequality, for

∀h ∈ H : X → K, the expected target error is bounded as

εT (h, fT ) =
1

2
[2εT (h, fT ) − εV (h, fV ) − εSi

(h, fSi
) + εV (h, fV )

+ εSi
(h, fSi

) + εT (h, fSi
) + εT (h, fV ) − εT (h, fSi

)

− εT (h, fV ) + εV (h, fSi
) + εSi

(h, fV ) − εV (h, fSi
) − εSi

(h, fV )]

=
1

2
([εT (h, fT ) − εT (h, fSi

)] + [εT (h, fT ) − εT (h, fV )]

+ εT (h, fSi
) + εT (h, fV ) + [εV (h, fSi

) − εV (h, fV )]

+ [εSi
(h, fV ) − εSi

(h, fSi
)] − εV (h, fSi

) − εSi
(h, fV )

+ εV (h, fV ) + εSi
(h, fSi

))

≤
1

2
([εT (fSi

, fT ) + εT (fV , fT ) + εT (h, fSi
) + εT (h, fV )

+ εV (fSi
, fV ) + εSi

(fV , fSi
) − εV (h, fSi

) − εSi
(h, fV )]

+ [εV (h) + εSi
(h)]) = B(h)

≤
1

2
[εT (f

∗
Si

, f
∗
T ) + εT (f

∗
V , f

∗
T ) + εT (h, f

∗
Si

) + εT (h, f
∗
V )

+ εV (f
∗
Si

, f
∗
V ) + εSi

(f
∗
V , f

∗
Si

) − εV (h, f
∗
Si

) − εSi
(h, f

∗
V )]

+
1

2
[εV (h) + εSi

(h)]

+
1

2
εSi

(fSi
, f

∗
Si

) + εV (fSi
, f

∗
Si

) + εT (fSi
, f

∗
Si

)
︸ ︷︷ ︸

θi
S

+
1

2
εV (fV , f

∗
V ) + εSi

(fV , f
∗
V ) + εT (fV , f

∗
V )

︸ ︷︷ ︸

θi
V

+ εT (fT , f
∗
T )

︸ ︷︷ ︸

θi
T

= DSi,V,T (f
∗
Si

, f
∗
T , f

∗
V , h) +

1

2
[εV (h) + εSi

(h)] + θi (19)

We introduce a weight parameter αi and sum up the upper
bound w.r.t. all source domains Si, i = 1, .., N leading to:

αiεT (h) ≤ αi

1

2
[εV (h) + εSi

(h)] + αiDSi,V,T (f
∗
Si

, f
∗
V , f

∗
T , h) + αiθi

εT (h) ≤
1

2
εV (h) +

1

2

∑

i

αi[εSi
(h) + 2DSi,V,T (f

∗
Si

, f
∗
V , f

∗
T , h) + 2θi]

≤
1

2
εV (h) +

1

2

∑

i

αiUi(h), s.t.
∑

i

αi = 1 (20)

6.2. Proof of Theorem 2.3

Definition 6.1 (Covering Number). Let (A, dp) be a metric
space. Set C is an γ-cover of A if for ∀x ∈ A, ∃y ∈ C
such that dp(x, y) = ‖x− y‖p < γ. The covering number
N (γ, A, dp) is the size of the smallest γ-cover.

N (γ, A, dp) = min{|C| s.t. C is a γ-cover of A} (21)

Definition 6.2 (Uniform Covering Number). Let F be a
hypothesis space of real-valued functions. For any γ >
0, and m the dp uniform covering number Np(γ, F,m) is
defined as

Np(γ,F ,m) = max
C:|C|=m

N (γ,F|C , dp), (22)

where F|C = {[f(x1), .., f(xm)] ∈ R
m|C =

{x1, .., xm}, f ∈ F}.

Lemma 6.3. For space F of real-valued functions:X →
[0,M ], for any distribution D, samples D̂ = {x1, .., xm}
i.i.d ∼ D, γ > 0 and m ≥ 2/γ2, Definition 6.2, the follow-
ing holds given Hoeffding’s inequality:

P (sup
f∈F

|Ex∈D̂f(x)− Ex∼Df(x)| ≥ γ)

≤ 4N1(
γ

8
,F , 2m)exp(− mγ2

32M2
) (23)

For the proof, we first show P (supf∈F |Ex∈D̂f(x) −
Ex∼Df(x)| ≥ γ) ≤ 2P (supf∈F |Ex∈D̂f(x) −

Ex∈D̂′f(x)| ≥
γ
2 ) if m ≥ 2/γ2. For a fixed D̂ and f ∈ F

that satisfies |Ex∈D̂f(x)− Ex∼Df(x)| ≥ γ, the following

holds given Jensen’s inequality:

E
D̂′∼D

|E
x∈D̂

f(x)−E
x∈D̂′f(x)| ≥ |E

x∈D̂
f(x)−Ex∼Df(x)| ≥ γ (24)

For m ≥ 2/γ2, the following holds given Hoeffding’s

inequality:

P (E
D̂′∼D

|E
x∈D̂

f(x) − E
x∈D̂′f(x)|

− |E
x∈D̂

f(x) − E
x∈D̂′f(x)| ≤

γ

2
) ≥

1

2
(25)

P (E
D̂′∼D

|E
x∈D̂

f(x) − E
x∈D̂′f(x)| −

γ

2

≤ |E
x∈D̂

f(x) − E
x∈D̂′f(x)|) ≥

1

2
(26)

P (|E
x∈D̂

f(x) − E
x∈D̂′f(x)| ≥

γ

2
) ≥

1

2
, (27)

such that P (supf∈F |Ex∈D̂f(x) − Ex∼Df(x)| ≥ γ) ≤

2P (supf∈F |Ex∈D̂f(x) − Ex∈D̂′f(x)| ≥
γ
2 ) for D̂, D̂′ ∼

D.

Let σi denote an independent uniform random vari-

able taking values in {−1,+1}. f(xi) − f(x′
i) and

σi(f(xi)−f(x′
i)) follows the same distribution as xi ∈ D̂ ∼

D,x′
i ∈ D̂′ ∼ D such that for ∀f ∈ F , P (|Ex∈D̂f(x) −

Ex∈D̂′f(x)| ≥ γ
2 ) = P ( 1

m |
∑m

i=1 σi(f(xi) − f(x′
i))| ≥



γ
2 ) = ED̂,D̂′∼DP ( 1

m |
∑m

i=1 σi(f(xi) − f(x′
i))| ≥

γ
2 |D̂, D̂′).

For fixed D̂, D̂′, let G(γ8 ) denote the smallest γ
8 -

cover of F|D̂∪D̂′ such that F ⊂ ∪g∈G( γ
8
)F(g, γ

8 ) where

F(g, γ
8 )|D̂∪D̂′ is γ

8 -covered by [g(x1), .., g(x
′
m)] ∈ R

2m.

Note that for ∀f ∈ F(g, γ
8 ),

1

m

m∑

i=1

|σi(f(xi) − g(xi))| +
1

m

m∑

i=1

|σi(f(x
′
i) − g(x

′
i))| ≤

γ

4

⇒
1

m
|

m∑

i=1

σi(f(xi) − f(x
′
i))| −

1

m
|

m∑

i=1

σi(g(xi) − g(x
′
i))| ≤

γ

4
(28)

Then we can proceed to the upper bounded by

P (sup
f∈F

1

m
|

m
∑

i=1

σi(f(xi)− f(x′
i))| ≥

γ

2
)

= P ( sup
g∈G γ

8

sup
f∈F(g, γ

8
)

1

m
|

m
∑

i=1

σi(f(xi)− f(x′
i))| ≥

γ

2
)

= P (∃g ∈ G γ
8

: sup
f∈F(g, γ

8
)

1

m
|

m
∑

i=1

σi(f(xi)− f(x′
i))| ≥

γ

2
)

≤
∑

g∈G γ
8

P (
1

m
|

m
∑

i=1

σi(g(xi)− g(x′
i))| ≥

γ

4
)

≤ 2N1(
γ

8
,F , 2m)exp{− m2γ2

32
∑m

i=1[g(xi)− g(x′
i)]

2
}

≤ 2N1(
γ

8
,F , 2m)exp(− mγ2

32M2
) (29)

For any 0 < δ < 1, we solve the following for γ to
complete the generalization bound:

δ = 4N1(
γ

8
,F , 2m)exp(− mγ2

32M2
)

⇒γ = M

√

32

m
log

2N1(
γ

8
,F , 2m)

δ
= f(γ) (30)

(a) c1 = γ′/γ∗ (b) c2 = M/γ∗

Figure 8

Corollary 6.4. According to Fig. 8, there exists universal
constant c = min(c1, c2) < 1 such that:

cMγ
∗ ≤ inf

γ≤M
(

∫ M

γ

f(ξ)dξ +Mγ) (31)

Corollary 6.5. Let D̂ denote a finite set with size m sam-

pled i.i.d. from a distribution D. For hypotheses f, f ′ ∈
H : X → K, let F = {f(x) = ε(h(x), h′(x)) : X →
[0,M ]|h, h′ ∈ H} be a real-valued function space. Given

Theorem 6.3, Corollary 6.4, for m ≥ 2/γ2 and 0 < δ < 1,

with probability at least 1− δ
11N+6 ,

εD(f, f
′
) ≤ ε

D̂
(f, f

′
)

+ O



 inf√
2

m
≤γ≤M

(γ +

∫
M

γ

√

1

m
log

2(11N + 6)N1(
ξ
8
,F, 2m)

δ
dξ)





(32)

Lemma 6.6. For hypothesis space F = {f(x) =
ε(h(x), h′(x)) : X → [0,M ]|h, h′ ∈ H}, F ′ = {f(x) =
ε(h(x), f∗

Si
(x)) : X → [0,M ]|h ∈ H}, F ′′ = {f(x) =

ε(h(x), fSi
(x)) : X → [0,M ]|h ∈ H}, the following holds:

N1(γ,F ,m) ≥ N1(γ,F ′
,m) ≥ N1(γ +∆γ,F ′′

,m) (33)

The left inequality is trivial as F ′ ⊂ F such that for
any C = {x1, .., xm}, a smallest γ-cover of F|C is also a
γ-cover for F ′|C . For the right inequality, let G|C denote the
γ-cover of F ′|C such that for ∀h ∈ H, there exists g ∈ G:

m
∑

j=1

|ε(h(xj), f
∗
Si
(xj))− ε(g(xj), f

∗
Si
(xj))| ≤ γ

⇒
m
∑

j=1

|ε(h(xj), fSi(xj))− ε(g(xj), fSi(xj))|

≤ γ + 2
m
∑

j=1

ε(f∗
Si
(xj), fSi(xj)) = γ +∆γ|C (34)

Let ∆γ = maxC:|C|=m ∆γ|C such that for any C =
{x1, .., xm}, a smallest γ-cover of F ′|C is also a γ + ∆γ-

cover for F ′′|C . Given Assumption 2.2, for any finite set C,

there exist f∗
Si

∈ H such that εC(f
∗
Si
, fSi

) → 0 ⇒ ∆γ ≈ 0
and we can conclude N1(γ,F

′,m) ! N1(γ,F
′′,m).

Given Theorem 2.1, for any labeling functions f∗
Si

∈
HSi

⊆ H, f∗
T ∈ HT ⊆ H, f∗

V ∈ HV ⊆ H, the expected

target error is bounded for ∀h ∈ H:

εT (h, fT ) =
1

2
[εV (h) + εSi

(h)] + DSi,T,V (f
∗
Si

, f
∗
T , f

∗
V , h) + θi (35)

Corollary 6.7. According to Assumption 2.2, there exist

f∗
Si

∈ HSi
⊆ H, f∗

V ∈ HV ⊆ H, f∗
T ∈ HT ⊆ H such that

∑
i αiθ̂i ≈ 0. Given Eqs. (32) and (35), Lemma 6.6, for

0 < δ < 1, with probability at least 1− δ, for ∀h ∈ H:



2εT (h) ≤ ε
V̂
(h) +

N∑

i=1

αiÛi(h)

+ O



 inf√
2

m
≤γ≤M

(γ +

∫
M

γ

√

1

m
log

2(11N + 6)N1(
ξ
8
,F, 2m)

δ
dξ)



 ,

(36)

Ûi(h) = ε
Ŝi

(h) + 2D
Ŝi,V̂ ,T̂

(f
∗
Si

, f
∗
V , f

∗
T , h) (37)

Let αi = exp(νÛi(h))
∑

j exp(νÛj(h))
denote the log-sum-exp trick.

for ν > 0, given Jensen’s & Cauchy’s inequality, we can
derive:

1

ν

∑

i

αiνÛi(h) ≤
1

ν
logEα[exp(νÛi(h))]

=
1

ν
log

∑

i exp
2(νÛi(h))

∑

i exp(νÛi(h))

≤ 1

ν
log

∑

i

exp(νÛi(h)) (38)

Combing Corollary 6.7, Eq. (38), Theorem 2.3 can be

proved.

6.3. Proof of Lemma 3.4

Corollary 6.8. Given Open-set Margin Discrepancy (Defi-
nition 3.1) and Unknown Predictive Discrepancy (Definition
3.2), ε measured on unknown class K can be related to υ for
∀f ∈ H,

εSK
i
(f, f∗

Si
) = υSK

i
(f, f∗

Si
) (39)

εV K (f, f∗
V ) = υV K (f, f∗

V ) (40)

εTK (f, f∗
T ) = υTK (f, f∗

T ) (41)

For the proof, the Open-set Margin Discrepancy between

f, f∗
T ∈ H over TK is defined by,

ε
TK (f, f

∗
T ) = E

x∼TK [omd(f(x), f
∗
T (x))] (42)

omd(f(x), f
∗
T (x)) = max(| log(1 − f(x)[y]) − log(1 − f

∗
T (x)[y])|,

| log(1 − f
∗
T (x)[y

∗
]) − log(1 − f(x)[y

∗
])|),

(43)

where y = l(f(x)), y∗ = l(f∗
T (x)). When measuring on

x ∼ TK , y∗ = K and f∗
T (x)[K] ≈ 1 since f∗

T is the
approximated labeling function of target domain. Therefore,
we can derive that,

εTK (f, f∗
T ) = Ex∼TK | log(1− f

∗
T (x)[K])− log(1− f(x)[K])|

= υTK (f, f∗
T ), (44)

where the rest can be proved analogously. Given the label

distribution πk
Si
,πk

V ,π
k
T , k = {1, 2, ...,K}, Assumption 3.3

and Corollary 6.8, we can reformulate the following terms

with g : X → Z and h, f∗
V : Z → K :

εSi(f
∗
V ◦ g, h ◦ g)

=

K−1
∑

k=1

π
k
Si
εSk

i
(f∗

V ◦ g, h ◦ g) + π
K
Si
εSK

i
(f∗

V ◦ g, h ◦ g)

=

K−1
∑

k=1

π
k
Si
εSk

i
(f∗

V ◦ g, h ◦ g) + π
K
Si
υSK

i
(f∗

V ◦ g, h ◦ g) (45)

υT (f
∗
V ◦ g, h ◦ g)

=

K−1
∑

k=1

π
k
TυTk (f

∗
V ◦ g, h ◦ g) + π

K
T υTK (f∗

V ◦ g, h ◦ g)

=

K−1
∑

k=1

π
k
TυTk (f

∗
V ◦ g, h ◦ g) + π

K
T υSK

i
(f∗

V ◦ g, h ◦ g) (46)

By excluding the intractable term υSK (f∗
V ◦ g, h ◦ g) due

to the shortage of source data in class K, we can approxi-

mate the expected discrepancy on Si by S
\K
i , T with a mild

condition that πK
Si

= πK
T = 1− α:

εSi
(f

∗
V ◦ g, h ◦ g)

=

K−1∑

k=1

π
k
Si

ε
Sk
i
(f

∗
V ◦ g, h ◦ g) +

πK
Si

πK
T

[υT (f
∗
V ◦ g, h ◦ g)

−
K−1∑

k=1

π
k
T υ

Tk (f
∗
V ◦ g, h ◦ g)]

= α[ε
S
\K
i

(f
∗
V ◦ g, h ◦ g) − υ

S
\K
i

(f
∗
V ◦ g, h ◦ g)] + υT (f

∗
V ◦ g, h ◦ g),

(47)

where the rest can be proved analogously.

7. Towards Joint Error

In this section, we prove that our proposal is an upper bound

of joint error. For simplicity, we consider a single source

domain S. Given Eq. (19), ∀h ∈ H, our upper bound is

further lower bounded by:

B(h) =
1

2
([εT (fS , fT ) + εT (fV , fT ) + εT (h, fS) + εT (h, fV ) + εV (fS , fV )

+ εS(fV , fS) − εV (h, fS) − εS(h, fV )] + [εV (h) + εS(h)])

=
1

2
([εT (fS , fT ) + εT (fV , fT ) + εT (h, fS) + εT (h, fV ) − εV (h, fS)

− εS(h, fV )] + [εV (h, fV ) + εV (fS , fV ) + εS(h, fS) + εS(fV , fS)])

≥
1

2
[εT (fS , fT ) + εT (fV , fT ) + εT (h, fS) + εT (h, fV )] (48)

Given h∗ = argminh∈H B(h), we can further derive:

min
h∈H

B(h) = B(h
∗
)

≥
1

2
[εT (fS , fT ) + εT (fV , fT ) + εT (h

∗
, fS) + εT (h

∗
, fV )]

≥
1

2
[εT (fS , fT ) + εT (fV , fT ) + εT (fV , fS)] (49)



if fS ∈ H, we can derive:

εT (fS , fT ) = εT (fS , fT )+ εS(fS , fS) ≥ min
h∈H

(εT (h)+ εS(h)) = λS,T

(50)

Otherwise, we can always derive:

εT (fS , fT ) ≥ εT (f
∗
S , fT )−εT (f

∗
S , fS)+εS(f

∗
S , fS)−εS(f

∗
S , fS) (51)

Let Ŝ, T̂ denote a finite set with size m from domain
S, T . According to Assumption 2.2, there exist hypothe-
ses f∗

S ∈ H such that we can ignore εT̂ (f
∗
S , fS), εŜ(f

∗
S , fS)

and lower bound εT (fS , fT ) with Uniform Covering Num-
ber (Definition 6.2). Given function space FS = {f(x) =
ε(h(x), fS(x)) : X → [0,M ]|h ∈ H}, for any δ > 0, with
probability at least 1− 2δ,

εT (fS , fT ) ≥ λS,T − [ε
Ŝ
(f

∗
S , fS) + ε

T̂
(f

∗
S , fS)

︸ ︷︷ ︸
zero

]

− O



 inf√
2

m
≤γ≤M

(γ +

∫
M

γ

√

1

m
log

2N1(
ξ
8
,FS , 2m)

δ
dξ)





(52)

8. Approximated Labeling Function Assump-

tion vs. Joint Error Assumption

E.g., let T̂ denote a finite set with size m from target domain

T . According to Corollary 6.5, given the Uniform Covering

Number (Definition 6.2) of function space FT = {f(x) =
ε(h(x), fT (x)) : X → [0,M ]|h ∈ H}, for any δ > 0,

with probability at least 1 − δ, the expected disagreement

θfT = εT (f
∗
T , fT ) is bounded by the empirical disagreement

θ̂fT = εT̂ (f
∗
T , fT ) for ∀f∗

T ∈ H:

εT (f
∗
T , fT ) ≤ εT̂ (f

∗
T , fT )

+O



 inf√
2

m
≤γ≤M

(γ +

∫ M

γ

√

1

m
log

2N1(
ξ

8
,FT , 2m)

δ
dξ)





(53)

We assume there exists f∗
T ∈ H such that in Theorem 2.3,

θ̂fT ≈ 0 thus can be ignored during the practical learning
process. For simplicity, we consider a single source domain
S. We show Assumption 2.2 is more feasible than assuming
empirical joint error λŜ,T̂ ≈ 0 in [1], especially when the

domain shift is large. To facilitate the analysis, let g : X ⊆
R

D → Z ⊆ R
F be injective on Ŝ, T̂ with the size n = m

respectively, such that true labeling functions fS , fT can be

decomposed as fF
S ◦ g, fF

T ◦ g. Let Ŝ
g
→ ẐS ∪ ẐC and

T̂
g
→ ẐT ∪ ẐC denote the feature space that overlaps at ẐC

with size c. For h ∈ HF : Z → K,

min
h∈HF

[ε
Ŝ
(h ◦ g, fS) + ε

T̂
(h ◦ g, fT )] = λ

Ŝ,T̂

= min
h∈HF

[
m − c

m
ε
ẐS

(h, f
F
S ) +

m − c

m
ε
ẐT

(h, f
F
T )

+
c

m
ε
ẐC

(h, f
F
S ) +

c

m
ε
ẐC

(h, f
F
T )]

≥
m − c

m
min

h∈HF
ε
ẐS

(h, f
F
S ) +

m − c

m
min

h∈HF
ε
ẐT

(h, f
F
T )

+
c

m
ε
ẐC

(f
F
T , f

F
S ), (54)

where fF
T , fF

S tend to disagree on ẐC in large domain
shift such that λŜ,T̂ increases as c grows. In addition, even

if εẐC
(fF

T , fF
S ) → 0, the solution for λŜ,T̂ → 0 is likely

to be more complex, which can be outside the hypothesis

space HF . E.g., let fF
S = |z| and fF

T = −|z − 1| + 1.

For ẐS ⊂ (−∞, 0], ẐC ⊂ (0, 1), ẐT ⊂ [1,∞), the optimal
solution for h is

−z, z ∈ ẐS

z, z ∈ ẐC

−z + 2, z ∈ ẐT







= h(z) +∈ HF
= {z ,→ a|z − b| + c|a, b, c ∈ R}

(55)

9. Consistency

In this section, we recall a general problem associated with

the consistency between the algorithm and theory in domain

adaptation. ε should be a consistent distance metric across

the measurement of source error and discrepancy according

to the derivation of any target error upper bound. How-

ever, most works violate this consistency as known as the

gap between the algorithm and theory. Although our pro-

posal cannot perfectly address this problem, we can prove

that Open-set Margin Discrepancy (OMD) in Definition 3.1

asymptotically satisfies the consistency.
Firstly, we show that OMD obeys the triangle inequal-

ity under the following circumstances. For the case where
two hypotheses agree on the point x (y = l(h1(x)) =
l(h2(x)), l(h3(x)) = y′; this condition is almost met when
we derive the upper bound in Theorem 1 except for fT , h),

omd(h1(x), h3(x)) + omd(h2(x), h3(x))

= max(| log(1− h1(x)[y])− log(1− h3(x)[y])|,
| log(1− h1(x)[y

′])− log(1− h3(x)[y
′])|)

+ max(| log(1− h2(x)[y])− log(1− h3(x)[y])|,
| log(1− h2(x)[y

′])− log(1− h3(x)[y
′])|)

≥ | log(1− h1(x)[y])− log(1− h3(x)[y])|
+ | log(1− h2(x)[y])− log(1− h3(x)[y])|
≥ | log(1− h1(x)[y])− log(1− h2(x)[y])|
= omd(h1(x), h2(x)) (56)

As the training proceeds, the target error of h will be mini-

mized such that the discrepancy between h, fT over domain

T is constantly reduced. Given the assumption that fT and

h gradually agree on T , we can conclude that OMD asymp-

totically satisfies the triangle inequality.
Then we show that the cross-entropy loss is a special

case of OMD by reasonably assuming fSi
(x)[y] = 1 and

l(fSi
(x)) = l(h(x)) = y for (x, y) ∈ Si. According to

Definition 3.1, the source error of h defined based on OMD
can be written as:

min
h∈H

εSi
(h) = min

h∈H
Ex∼Si

[omd(h(x), fSi
(x))]

= min
h∈H

Ex,y∼Si
| log(1 − fSi

(x)[y]) − log(1 − h(x)[y])|

⇒ min
h∈H

Ex,y∼Si
log(1 − h(x)[y]) (57)



Office-Home DomainNet

METHOD TYPE STATS →Clipart →Product →RealWorld →Art →Clipart →Painting →Real →Sketch

UM Multi-Source mean 68.0 79.0 79.4 67.7 70.3 66.0 75.1 66.1

std 0.38 0.49 0.12 0.23 0.09 0.44 0.11 0.17

UM+AFG Source-Free mean 61.1 77.0 72.0 60.3 64.8 60.0 67.6 60.0

std 0.33 0.08 0.35 0.88 0.46 0.09 0.21 0.37

Table 5. Statistics of HOS (%) score with ResNet-50 model fine-

tuned under 1-shot setting

METHOD TYPE →Clipart →Product →RealWorld →Art

OS∗ OS∗ OS∗ OS∗

S + V + Lsim Source-Combine 63.5 83.3 80.1 66.3

S + V + Lssl 65.3 86.4 83.7 71.7

S + V + Lssl + Lsim 66.7 86.9 84.5 72.5

V + Lssl + Lsim Source-Free 12.1 63.3 56.8 14.2

AFG+ V + Lsim 54.2 77.8 81.5 67.4

AFG+ V + Lssl 63.3 80.7 83.0 69.1

AFG+ V + Lssl + Lsim 62.9 81.6 85.1 70.7

Table 6. Accuracy of ResNet-50 model fine-tuned with 1-shot semi-

supervised learning on Office-Home dataset

In practice, we optimize − log h(x)[y] instead to avoid ex-

ploding or vanishing gradient.

10. Results

10.1. Accuracy

Full tables of the results in the main paper are provided as

Tabs. 7 to 10.

10.2. Statistics

For each sub-task in Office-Home and DomainNet datasets,

we ran the experiment 3 times with different random seeds.

Tab. 5 provides our method’s mean accuracy and standard

deviation.

10.3. Effectiveness of Attention-based Feature Gen-
eration

As suggested in [63], a high OS∗ score is crucial to improve

the model performance in open-set problems as we can al-

ways trade the accuracy of known class for more UNK. To

briefly demonstrate the effectiveness of AFG, we replace the

true source data with generated labeled features under the

1-shot semi-supervised learning setting without any adapta-

tion or unknown separation strategy. Tab. 6 indicates that the

labeled features produced by AFG are adequate for learning

a reliable classification model of known class in target data.

11. Semi-supervised & Self-supervised Learn-

ing

To build a more reliable target function space HF
T and fa-

cilitate the feature alignment for unknows, we introduce

semi-supervised and self-supervised regularization Lssl =
Lent + Lpse + Lcon and Lsim.

Regularized Entropy Minimization As introduced in
[14, 39, 46], we impose a class balance prior that can penal-

ize classifiers with complex decision boundaries on entropy
minimization [15] to yield a more sensible solution:

Lent = −Ex∈T̂

∑

y∈Y
f
′
T (g(x))[y] log f

′
T (g(x))[y]

+
∑

y∈Y
Ex∈T̂ f

′
T (g(x))[y] logEx∈T̂ f

′
T (g(x))[y] (58)

Pseudo Labeling As introduced in [44, 46], for input x ∈
T̂ and its random augmentation x′ [7], we minimize cross
entropy for x with pseudo labels of x′:

Lpse = −Ex∈T̂ log f ′
T (g(x))[argmaxy∈Y h(g(x′))[y]] (59)

Consistency Regularization As introduced in [22, 42],

we penalize the difference of the outputs for input x ∈ T̂
and its random augmentation x′:

Lcon = Ex∈T̂ |f
′
T (g(x))− f

′
T (g(x

′))| (60)

Contrastive Regularization Contrastive learning [5] con-
siders every instance as a class of its own and tries to maxi-

mize the similarity of features between x ∈ T̂ and its random
augmentation x′ while pushing different instances far away:

Lsim = −Ex∈T̂ log
exp(g(x) · g(x′)T)

exp(g(x) · g(x′)T) +
∑

x′′∈T̂ :x′′ '=x exp(g(x) · g(x′′)T)
(61)



METHOD TYPE →Clipart →Product →RealWorld →Art Avg.

UNK OS∗ HOS UNK OS∗ HOS UNK OS∗ HOS UNK OS∗ HOS UNK OS∗ HOS

OSBP Source-Combine 63.4 57.6 60.4 76.3 64.9 70.1 77.2 63.5 69.7 77.9 49.7 60.7 73.7 58.9 65.2

PGL 68.0 52.1 59.0 71.6 64.3 67.7 73.5 61.0 66.7 69.8 54.5 61.2 70.7 57.9 63.7

ANNA 79.6 56.0 65.8 76.1 66.5 71.0 77.6 64.3 70.3 82.4 48.4 61.0 78.9 58.8 67.0

PUJE 74.8 58.7 65.8 67.6 80.0 73.3 72.1 78.2 75.0 71.2 60.6 65.5 71.4 69.3 69.9

MOSDANET Multi-Source 63.4 59.6 61.5 67.9 72.3 70.0 71.8 71.0 71.4 67.1 57.0 61.6 67.6 64.9 66.1

HyMOS 59.3 54.1 56.6 67.3 61.8 64.4 75.8 58.8 66.2 70.6 50.7 59.0 68.3 56.4 61.6

UM 78.7 59.9 68.0 78.7 79.3 79.0 82.5 76.5 79.4 72.8 63.3 67.7 78.2 69.8 73.5

MPU∗ Source-Free 48.8 44.1 46.3 57.7 61.9 59.7 62.8 53.6 57.8 60.3 56.5 58.3 57.4 54.0 55.5

OSBP∗ 35.6 59.3 44.5 45.3 72.0 55.6 53.2 66.9 59.3 49.2 63.9 55.6 45.8 65.5 53.8

PUJE∗ 56.1 48.8 52.2 70.3 60.5 65.0 72.4 61.0 66.2 60.4 57.0 58.7 64.8 56.8 60.5

UM+AFG 70.9 53.8 61.1 83.3 71.6 77.0 73.7 70.4 72.0 66.1 55.5 60.3 73.5 62.8 67.6

Table 7. Accuracy of ResNet-50 model fine-tuned on Office-Home dataset under 1-shot setting

METHOD TYPE →Clipart →Product →RealWorld →Art Avg.

UNK OS∗ HOS UNK OS∗ HOS UNK OS∗ HOS UNK OS∗ HOS UNK OS∗ HOS

OSBP Source-Combine 78.7 52.0 62.6 78.9 66.8 72.3 69.0 67.7 68.3 75.9 55.7 64.3 75.6 60.6 66.9

PGL 75.6 52.3 61.8 81.7 61.1 69.9 71.9 66.1 68.9 66.3 61.9 64.0 73.9 60.4 66.2

ANNA 70.0 60.0 67.7 79.7 68.1 73.4 71.3 69.3 70.3 75.0 55.3 63.7 74.0 63.2 68.8

PUJE 79.8 65.0 71.7 68.3 81.1 74.2 72.8 84.3 78.1 72.2 63.0 67.3 73.3 73.4 72.8

MOSDANET Multi-Source 74.3 59.2 65.9 73.5 74.0 73.8 68.3 70.8 69.6 68.2 59.6 63.6 71.1 65.9 68.2

HyMOS 71.7 58.4 64.4 63.1 72.1 67.3 67.9 68.8 68.4 68.4 57.0 62.2 67.8 64.1 65.6

UM 74.6 69.8 72.1 80.5 85.6 83.0 79.8 81.9 80.8 73.9 67.1 70.3 77.2 76.1 76.6

MPU∗ Source-Free 62.5 48.2 54.4 64.7 67.9 66.3 72.2 51.6 60.2 77.5 52.3 62.5 69.2 55.0 60.9

OSBP∗ 58.0 55.1 56.5 56.3 77.3 65.1 57.7 72.7 64.3 60.1 59.8 59.9 58.0 66.2 61.5

PUJE∗ 60.6 56.4 58.4 74.3 66.7 70.3 75.2 65.4 70.0 66.6 59.3 62.7 69.2 62.0 65.4

UM+AFG 71.2 61.5 66.0 81.1 79.1 80.1 82.3 75.6 78.8 69.4 60.4 64.6 76.0 69.2 72.4

Table 8. Accuracy of ResNet-50 model fine-tuned on Office-Home dataset under 3-shot setting

METHOD TYPE →Clipart →Painting →Real →Sketch Avg.

UNK OS∗ HOS UNK OS∗ HOS UNK OS∗ HOS UNK OS∗ HOS UNK OS∗ HOS

OSBP Source-Combine 64.2 46.9 54.2 57.5 43.9 49.8 81.8 50.7 62.6 64.5 40.1 49.5 67.0 45.4 54.0

PGL 73.0 50.6 59.8 67.1 53.2 59.4 71.9 63.3 67.4 68.1 53.1 59.7 70.0 55.1 61.6

ANNA 60.0 51.7 55.6 63.8 46.2 53.6 77.7 59.6 67.5 66.2 51.4 57.9 66.9 52.2 58.7

PUJE 66.3 62.8 64.4 62.4 57.5 59.8 65.2 70.4 67.7 64.3 58.3 61.2 64.6 62.3 63.3

MOSDANET Multi-Source 72.3 46.2 56.4 65.1 48.5 55.6 69.6 67.5 68.5 65.4 46.1 54.1 68.1 52.1 58.7

HyMOS 63.4 45.6 53.0 65.4 46.1 54.1 78.8 55.5 65.1 61.0 52.5 56.4 67.2 49.9 57.2

UM 77.5 64.5 70.3 77.9 57.3 66.0 74.9 75.2 75.1 80.6 56.0 66.1 77.7 63.3 69.4

MPU∗ Source-Free 61.4 49.0 54.5 51.6 58.8 55.0 60.5 64.4 62.4 58.2 41.5 48.4 57.9 53.4 55.1

MOSDANET∗ 58.7 57.7 58.1 53.1 55.5 54.3 57.2 70.6 63.2 50.2 48.6 49.4 54.8 58.1 56.3

PUJE∗ 63.8 57.5 60.5 58.9 52.1 55.3 71.1 58.2 64.0 56.3 50.2 53.1 62.5 54.5 58.2

UM+AFG 72.6 58.6 64.8 63.9 56.5 60.0 76.6 60.6 67.6 67.7 53.8 60.0 70.2 57.4 63.1

Table 9. Accuracy of ResNet-50 model fine-tuned on DomainNet dataset under 1-shot setting

METHOD TYPE →Clipart →Painting →Real →Sketch Avg.

UNK OS∗ HOS UNK OS∗ HOS UNK OS∗ HOS UNK OS∗ HOS UNK OS∗ HOS

OSBP Source-Combine 64.1 51.9 57.4 67.1 43.9 53.1 80.3 53.2 64.0 56.6 45.0 50.1 67.0 48.5 56.2

PGL 68.3 56.8 62.0 67.5 56.3 61.4 73.6 65.7 69.4 68.2 55.5 61.2 69.4 58.6 63.5

ANNA 69.7 55.0 61.5 63.3 47.6 54.3 74.4 60.1 66.5 66.6 51.5 58.1 68.5 53.6 60.1

PUJE 63.9 68.6 66.2 65.5 58.4 61.7 68.1 70.6 69.3 71.7 58.2 64.2 67.3 64.0 65.4

MOSDANET Multi-Source 67.3 46.9 55.3 64.5 53.0 58.2 70.5 69.1 69.8 66.4 46.9 54.9 67.2 54.0 59.6

HyMOS 61.0 49.1 54.4 63.3 50.2 56.0 77.8 59.4 67.4 60.1 54.4 57.1 65.6 53.3 58.7

UM 75.0 68.3 71.5 82.1 59.2 68.8 78.3 78.8 78.5 73.2 66.2 69.5 77.2 68.1 72.1

MPU∗ Source-Free 64.4 52.1 57.6 74.2 50.5 60.1 67.6 65.3 66.4 64.2 44.9 52.9 67.6 53.2 59.3

MOSDANET∗ 60.7 60.3 60.5 59.0 59.7 59.3 56.3 70.4 62.5 54.3 54.4 54.3 57.6 61.2 59.2

PUJE∗ 66.1 58.8 62.2 63.4 59.6 61.4 72.1 64.0 67.8 62.5 51.1 56.2 66.0 58.4 61.9

UM+AFG 72.4 67.1 69.7 66.4 62.3 64.2 76.8 70.4 73.4 68.7 61.4 64.8 71.1 65.3 68.0

Table 10. Accuracy of ResNet-50 model fine-tuned on DomainNet dataset under 3-shot setting


