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A. Appendix

This appendix presents supplementary experimental anal-
yses and technical details supporting the main findings.
Sec. A.1 demonstrates CLIP-AST’s architectural scalability
through comparisons with larger ViT-L/14 models, showing
consistent performance gainsacross 11 benchmarks. Com-
prehensive ablation studies reveal: 1) optimal K values bal-
ancing in-distribution accuracy and OOD robustness, 2) the
training efficiency of our selective fine-tuning approach and
3) superiority over parameter-efficient methods. Sec. A.2
establishes theoretical connections between our parameter
selection strategy and Fisher Information Matrix principles.
Sec. A.3 include prompt templates for various datasets and
details of SCL loss coefficients.

A.1. More Experiments
Compare With Larger Model. To investigate the architec-
tural scalability of CLIP-AST, we systematically evaluate
its stability when scaled to CLIP’s larger ViT-L/14 back-
bone under the 16-shot paradigm, comparing against three
representative adaptation approaches: 1) vanilla CLIP [38]
as the foundational baseline, 2) cache-based adaptation
via Tip-Adapter [55], and 3) self-regulatory prompt tun-
ing through PromptSRC [21]. As demonstrated in Tab. 6,
CLIP-AST consistently maintains superior performance on
the scaled architecture, achieving a 2.29% average accuracy
improvement over PromptSRC across 11 benchmarks. This
performance persistence manifests most notably in fine-
grained recognition tasks, where CLIP-AST attains 68.34%
on FGVC Aircraft and 90.36% on StanfordCars, validating
that CLIP-AST effectively preserves model stability during
architectural scaling.
Ablation of K in the OOD setting. To examine how
the selection of K affects both the generalization of the
in-distribution and out-of-distribution, we conduct system-
atic experiments varying K values during training on Im-
ageNet, followed by evaluation on two OOD benchmarks:
ImageNet-V2 and ImageNet-Sketch. Our empirical analy-
sis demonstrates that increasing K generally enhances in-
distribution accuracy while progressively improving OOD
robustness. However, we observe a marginal performance
degradation on ImageNet-V2 at K = 10 compared to
K = 9, suggesting potential over-parameterization effects.
These findings indicate that while increasing K benefits
model generalization, excessively large K values may in-
duce overfitting risks.
Ablation of training step of transformer fine-tuning

stage. The transformer fine-tuning stage estimates parame-
ter importance through gradient second-moment statistics.
To investigate its training step impact, we conduct sys-
tematic ablation studies on the StanfordCars dataset under
1-shot, 16-shot, and base-to-novel generalization settings.
Our experiments compare full transformer training against
CLIP-AST variants with varying Stage 1 durations (1/100
to 1 epoch) followed by 10-epoch selective fine-tuning. As
shown in Tab. 7, some key observations emerge: First,
reducing Stage 1 from 1 epoch to 1/100 epoch preserves
99.3% 16-shot accuracy, demonstrating estimation robust-
ness. Second, full transformer training catastrophically fails
in 1-shot and base-to-novel settings. The proposed method
has been proven to be effective in terms of both effect and
training efficiency.
Comparison with selective fine-tuning methods. We con-
duct a comprehensive comparison with other selective fine-
tuning approaches using the ViT-B/16 model in the 16-shot
learning setting. Specifically, we evaluate two representa-
tive methods: 1) BitFit [53], which selectively updates bias
parameters (we default to selecting all bias terms in Trans-
former layers), and 2) GPS [57], a gradient-based parameter
selection approach where we employ the moving average of
gradients from AdamW optimization as the parameter im-
portance metric. Both approaches are implemented within
the transformer module of the CLIP architecture. In the
case of GPS, only the gradients are utilized as the selec-
tion strategy along with the corresponding hyperparamet-
ric, while other enhancement factors discussed in the paper
have not been incorporated. As demonstrated in Tab. 8, our
method achieves superior performance across all 11 bench-
mark datasets. These results substantiate that our adaptive
selection strategy enables more effective identification of
mission-critical parameters compared to existing parameter
selection.

A.2. Theoretical Connection to Fisher Information
The Fisher Information Matrix (FIM) provides a principled
framework for understanding the sensitivity of parameters
in probabilistic models. For a parameterized distribution
p(x|θ), the FIM is defined as:

F (θ)ij = Ex∼p(x|θ)

[
∂ log p(x|θ)

∂θi

∂ log p(x|θ)
∂θj

]
. (12)

The diagonal elements Fii quantify the sensitivity of pa-
rameter θi - large values indicate parameters whose pertur-
bations significantly affect the model’s output distribution.



Method Caltech101 DTD EuroSAT FGVC Aircraft Flowers102 Food101 ImageNet OxfordPets StanfordCars SUN397 UCF101 Avg Acc(%)
CLIP [38] 93.75 52.22 60.50 32.91 78.51 90.88 73.46 93.75 76.33 67.76 76.92 72.45
Tip-Adapter [55] 97.61 75.95 90.84 56.95 98.34 91.70 78.74 95.31 89.13 79.22 88.26 85.64
PromptSRC [21] 97.20 78.10 90.10 54.80 98.50 92.00 79.20 95.10 86.80 80.40 88.90 85.55
CLIP-AST(Ours) 98.29 78.60 94.45 68.34 99.06 91.71 79.20 96.12 90.36 80.23 89.95 87.84

Table 6. Comparison with larger ViT-L/14 backbone under 16-shot setting.
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Figure 7. Ablation study of the parameter K in the OOD setting, trained on in-distribution (ImageNet) and evaluated on out-of-distribution
target datasets (ImageNet-Sketch and ImageNet-V2).

Method Stage1 Stage2 1-shot 16-shot B2N-Base B2N-Novel B2N-HM 16-shot Cost
Transformer Full Training - - 51.65 86.97 84.01 52.54 40.02 113s
CLIP-AST 1 epoch - - - - - - 11s
CLIP-AST 1/100 epoch 10 epoch 68.72 85.87 84.11 74.05 78.76 101s
CLIP-AST 1/10 epoch 10 epoch 69.25 85.81 83.03 74.20 78.36 101s
CLIP-AST 1 epoch 10 epoch 69.28 86.05 84.16 74.30 78.92 111s

Table 7. Compared with the previous SOTA methods in the out-of-distribution setting, where the model is trained on the ImageNet dataset
with 16-shot and evaluated on the ImageNet-V2 and ImageNet-Sketch benchmarks.

Method Caltech101 DTD EuroSAT FGVC Aircraft Flowers102 Food101 ImageNet OxfordPets StanfordCars SUN397 UCF101 Avg Acc(%)
CLIP [38] 93.51 43.88 48.39 24.66 85.77 66.92 70.06 88.72 66.12 63.32 65.96 65.21
BitFit [53] 96.19 68.56 86.12 44.07 87.36 72.46 94.19 93.68 79.59 74.21 83.14 79.96
GPS [57] 96.22 69.70 85.64 54.12 87.51 73.58 97.27 94.46 84.75 76.50 85.75 82.31
CLIP-AST(Ours) 97.16 75.65 94.51 60.67 87.64 73.91 98.50 94.52 88.45 77.71 87.1 85.07

Table 8. Comparison of our adaptive selection strategy (CLIP-AST) with selective fine-tuning methods, including BitFit [53] and GPS [57],
on 11 benchmark datasets in the 16-shot learning setting.

In classification tasks, the empirical FIM can be approx-
imated through gradient statistics:

F (θ) ≈ E(x,y)∼D
[
∇L(θ)∇L(θ)⊤

]
, (13)

where Fii ≈ E[g2i ] corresponds to the second moment
of gradients. This establishes a direct connection to the
AdamW optimizer’s second-moment estimate vi in Eq. (5).
Our importance scores v′i = Avg(1/

√
v̂i) are inversely cor-

related with Fii, prioritizing parameters with lower Fisher
information for adaptation.

The theoretical justification emerges from two perspec-
tives: 1) Parameters with low Fii (equivalently small vi)
exhibit stable gradient directions, permitting larger updates
without destabilizing pre-trained knowledge. 2) High Fii

parameters correspond to ”anchors” in the pre-trained fea-
ture space - freezing them preserves zero-shot capabilities
while allowing task-specific adaptation through flexible pa-
rameters.

A.3. More Details of Experimental Setting

Prompt Templates. Following prior work [55, 59], we
adopt the following prompt templates for different datasets.
Notably, while previous works typically employ multiple
prompt templates for ImageNet, we use a single simplified
template across all variants. The complete template config-
urations are as follows:

• Caltech101: a photo of a {}.
• DTD: {} texture.
• EuroSAT: a centered satellite photo of
{}.

• FGVC Aircraft: a photo of a {}, a type
of aircraft.

• Food101: a photo of {}, a type of food.
• ImageNet, ImageNetV2, ImageNet Sketch,
StanfordCars, SUN397: a photo of a {}.

• OxfordFlowers: a photo of a {}, a type
of flower.



• OxfordPets: a photo of a {}, a type of
pet.

• UCF101: a photo of a person doing {}.
Coefficients for the SCL loss. The coefficients controlling
the SCL loss exhibit task-aware adaptation based on distinct
learning objectives across settings. For the few-shot set-
ting where overfitting mitigation must be carefully balanced
with preserving discriminative power in low-data regimes,
we employ moderate coefficients (typically around 1.0) to
maintain stable gradient signals from the primary classifica-
tion objective. In contrast, for base-to-novel generalization
tasks where feature-space regularization plays a more criti-
cal role, we amplify the SCL coefficients (ranging from 10
to 100, and even higher for some datasets) to reduce over-
fitting on base classes.
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