
Attribute-formed Class-specific Concept Space: Endowing Language Bottleneck
Model with Better Interpretability and Scalability

Supplementary Material

A. The implementation detail of DSS

A.1. The detail of summary step

This subsection introduces the implementation detail of the
summary step in DSS. The diagram of the summary step is
shown in Fig. A1. Considering the token length limitation
of LLM and its unreliability in generating long texts, it is
unable to directly ask LLM to summary the entire attribute
set by giving LLM all the generated concepts {ci}Ki=1 in
the description step. Therefore, we query the attributes on a
per-class basis. Furthermore, since quarrying LLM multiple
times may lead to inconsistent outputs (e.g., nose & snout),
we adopt an iterative approach to summarize the attribute
set Ǎ. That is, for each query, we encourage the LLM to use
words from the existing attribute set Ǎi−1 to summarize the
attributes of ci, and only output new words when no suitable
attributes are available in Ǎi−1 based on the prompt qsum,
formally,

Ǎi = Ǎi−1 + LLM
(
ci, Ǎi−1, qsum

)
. (A1)

The overall attribute set Ǎ is equal to ǍK .
To further avoid duplicate and synonymous attributes,

we use LLM to resummarize the attribute set with the
prompt qres, formally,

A = LLM
(
Ǎ, qres

)
. (A2)

However, the attribute set summarized by the above
prompt still has two limitations. The first is that some
collected attributes describe the non-visual information of
classes (e.g., the alternative name, smell, etc.). Predictions
based on these non-visual attributes will disturb the inter-
pretability of the inference process. And the other limita-
tion is that some attributes are very sparse on categories,
with only a few classes having corresponding descriptions.
To address the above two limitations, we first use LLM to
filter non-visual attributes using the prompt pvis, formally,

Â = A− LLM
(
A, qvis

)
, (A3)

where Â represents the visual attribute set, LLM
(
A, qvis

)
is the non-visual attribute set summarized by LLM.

Then we count the number of descriptions correspond-
ing to each attribute and remove attributes that occur with
a frequency of less than r% across all classes to obtain the
final attribute set A.

A.2. The prompts used in DSS
This subsection introduces the prompts used in DSS. Since
we directly use the concept sets collected by existing
work [33] as the output of the Description Step, the prompts
used in this step are identical to its released prompts. In the
Summary Step, we first use qsum to prompt LLM iteratively
summarize the attributes by category, which is as follows:

Your task is to extract attributes of different cate-
gories from the descriptions I gave you.
Specially, you can complete the task by following
the instructions:
1. You can select the noun related to the attribute
form exsit attribute set, and if you think the at-
tribute describe by the phrase is not among them,
you can answer other words.
2. Each phrase corresponds to a description, and
the number of the two should also be consistent.
3. Output a Python dictionary with the {attribute
name} as the key, and no newline required be-
tween each description. PLEASE USE “:” AF-
TER the KEY.

Subsequently, we use LLM to remove duplicate at-
tributes from the attribute set with the prompt qres:

Your task is to merge the attributes I give you into
semantically consistent attribute groups.
Specially, you can complete the task by following
the instructions:
1. Only merge the attributes I give, and only
merge semantically consistent attributes.
2. The semantics of the merged attributes should
not be repeated.
3. The words representing an attribute group must
be the words of the attributes I give, and the words
in the same attribute group must all come from the
attributes I give.
4. The sum of the words in all attribute groups
should be equal to the attribute set I gave.
5. Output some python lists, each list represents
a attribute group.
===
Please merge semantically consistent attribute
among the attributes attribute set:
===

Next, we use LLM to remove non-visual attributes with
the prompt qvis:



Figure A1. Illustration of the summary step in DSS strategy. Specifically, we summarize the attributes of class concepts through the
following steps: first, iteratively summarize the attributes by category; next, remove duplicate attributes from the attribute set; then,
eliminate non-visual attributes; and finally, remove sparse attributes.

Approach Aircraft CUB DTD Flowers102 Food101 OxfordPets CIFAR-10 CIFAR-100 ImageNet

Unexplainable ZS-CLIP [25] 32.6 63.4 53.2 79.3 91.0 93.6 86.0 55.6 71.4

Training-free
Language
Bottleneck

VDCLIP [20] - 63.5 54.4 - 92.4 92.3 - - 71.5
CuPL [24] 36.7 - 58.9 78.8 91.2 93.4 83.4 60.4 74.1

CLIP-GPT [19] 34.5 64.8 56.4 77.8 91.1 92.8 - - 71.8
ALBM* (ours) 34.4 66.5 59.9 79.9 91.6 93.9 85.4 61.5 73.4

Table A1. Comparison with zero-shot CLIP and training-free language bottlenecks on the zero-shot setting, where class names are added
in the concepts, ALBM* indicate zero-shot prediction based on our collected concept sets, and “-” indicates that the original approaches
didn’t collect the concept set for the dataset.

Suppose you have some photos of {all class
name}, please write down {attribute set} in order
whether these attributes are the visual attributes
of these pictures:

In the Supplement Step, we utilize LLM to supply the
missing concepts with the prompt qsup as follows:

Your task is to describe a certain attribute of a cer-
tain class.
Specially, you can complete the task by using
short and precise descriptions. And no newline
is required before each description.
===
Please describe the attribute {attribute} of the
class {class name} according to the following ex-
amples, and no newline required between each
description:
===

where the content inside the curly braces represents the cor-
responding variables.

B. Additional analysis

B.1. Zero-shot performance with class names

In Tab. 3, we compared our approach with existing TfLB
approaches under the setting where class descriptions only
include visual concepts without class names, to rigorously
evaluate the performance of interpretable image recogni-
tion. However, the performance of existing TfLB ap-
proaches suffers significantly under this setting. As a result,
existing TfLB approaches [19, 24, 32] recommend includ-
ing class names in the descriptions, such as ”a photo of a
class name, which has/is class concept,” to achieve better
classification performance. To further validate the effective-
ness of our proposed method, we conducted comparative
experiments under this setting as well, as shown in Tab. A1.
From Tab. A1, it can be seen that our approach achieves
the best performance on 6 out of 9 datasets, slightly un-
derperforming the current state-of-the-art results on only 3
datasets. These results demonstrate the effectiveness of our
proposed DSS strategy, which extracts more comprehensive
visual information for each class by summarizing a cross-
class shared attribute set.



Approach Aircraft CUB DTD Flowers102 Food101 CIFAR-10 CIFAR-100 ImageNet Average

Class-Shared
Concept Space

Labo [33] 45.6 78.2 67.6 92.6 87.6 85.7 45.5 71.0 71.7
ALBM (ours) 53.5 83.4 68.6 98.1 89.1 86.0 62.4 76.5 77.2

Class-Specific
Concept Space

Labo [33] 41.2 69.5 66.3 95.7 82.9 80.9 49.5 69.2 69.4
ALBM (ours) 40.0 69.7 69.4 92.4 84.8 84.2 52.5 70.0 70.4

Table A2. Comparison with existing LBM approach LaBo [33] in class-shared concept space and class-specific concept space under 16-
shot few-shot learning setting. For fair comparison, we use CLIP’s original visual representation instead of the feature of visual attribute
prompt for our approach.

B.2. Comparison with existing LBM in class-shared
and class-specific concept space

In Section 4.3, we analyzed the reason for our relatively
worse performance on the base classes in the Aircraft and
Food101 datasets compared with existing LBMs is that
existing LBMs learn in a category-shared concept space,
where they exploit explainable spurious cues to achieve
better performance. To further verify this, we compared
our ALBM with the existing LBM approach LaBo [33] in
both class-shared concept space (where the concept classi-
fier identifies classes based on concepts from all classes)
and class-specific concept space (where the concept classi-
fier identifies classes based on concepts specific to them), as
shown in Tab. A2. It is worth noting that, for a fair compar-
ison, we do not use visual attribute prompts here but instead
use CLIP’s original visual representation. Additionally,
CLBM is not applicable to the category-specific concept
space because its concept set does not provide a mapping
between concepts and categories. From Tab. A2, it is clear
that, in general, ALBM outperforms existing LBM meth-
ods in both class-shared and class-specific settings, demon-
strating that the concept set we generate with a unified at-
tribute set better reflects the visual information of classes.
Furthermore, the performance of both LaBo and ALBM in
the category-specific concept space is weaker than in the
category-shared concept space, which highlights the trade-
off between interpretability and performance. This is due
to the insufficient interpretability of features extracted by
the CLIP model. Therefore, we further propose VAPL to
extract features on each fine-grade attribute.

B.3. Few-shot performance comparison

Yang et al. [33] found that compared to linear-probe CLIP,
LBM achieves better few-shot performance by incorporat-
ing class concept information, which enhances the image
recognition process. To evaluate the few-shot capability
of our approach, we compare its performance with LaBo
and LP-CLIP on Food101, CUB, Aircraft, and Flowers102
datasets, as shown in Fig. A2. It is clear that compared to
LP-CLIP, ALBM demonstrates significant performance ad-
vantages, particularly when the number of training samples
is extremely low. Additionally, it outperforms LaBo, fur-

ther emphasizing its effectiveness. These results highlight
that our collection strategy enhances few-shot learning by
introducing more informative class concepts.

B.4. Interpretability verification via sparse predic-
tion

To further verify the interpretability of ALBM, we evalu-
ated the accuracy under diifferent NECs. Number of Effec-
tive Concepts (NEC) [28] is a newly proposed CBM inter-
pretability metric that restricts the number of concepts with
nonzero weights, which is motivated by the observation that
when the number of concepts is very large, even those lack-
ing interpretability can achieve high performance. Con-
versely, when concepts are sparse, only interpretable ones
can provide sufficient information for recognition. Thus,
by limiting NEC, different LBMs can be fairly compared
in terms of interpretability and performance. As shown in
Fig. A3, our approach achieves superior performances com-
pared with LaBo and random concepts, further verifying the
interpretability of ALBM.

B.5. Relationship between interpretability and
model size

In this subsection, we further analyze the relationship be-
tween interpretability and model size to provide guidance
on model selection for the user of interpretable classifica-
tion models. Therefore, we compare the zero-shot and base-
to-novel classification performance of ALBM models using
different versions of CLIP, as shown in Tab. A3 & A4. By
comparing the first and second rows of Tab. A3 & A4, it
can be observed that ViT-B/16 outperforms ViT-B/32 in all
settings. This is due to that although these CLIP models
have the same number of parameters, the smaller patches in
the ViT-B/16 version preserve more local features, resulting
in stronger interpretability. Furthermore, as shown in the
third row of Tab. A3 & A4, CLIP with larger parameter size
consistently outperforms its smaller versions, demonstrat-
ing a significant improvement in the ability to capture inter-
pretable fine-grained attribute features. This aligns with the
scaling law. Therefore, we recommend using larger mod-
els for interpretable image recognition whenever resources
allow.



(a) Food101 (b) CUB (c) Aircraft (d) Flowers102

Figure A2. Few-shot performance comparison between our ALBM, LP-CLIP [25], and LaBo [33] on Food101, CUB, Aircraft, and
Flowers102 datasets.

(a) Food101 (b) CUB (c) Aircraft (d) Flowers102

Figure A3. 16-shot performance comparison between our ALBM, LaBo [33], and randomly initialized concept bottleneck layer under
different NECs. The experiments are conducted on Food101, CUB, Aircraft, and Flowers102 datasets.

CLIP Version Aircraft CUB DTD Flowers102 Food101 OxfordPets CIFAR-10 CIFAR-100 ImageNet Average

ViT-B/32 (88M) 12.5 16.9 38.9 30.3 56.4 28.5 66.6 30.6 51.0 38.1
ViT-B/16 (88M) 14.3 17.2 40.7 43.0 58.8 32.0 79.0 33.4 55.5 41.5
ViT-L/14 (304M) 18.0 25.0 48.5 54.9 75.4 35.9 83.1 43.1 64.6 49.8

Table A3. Zero-shot classification performance of ALBM with different CLIP versions, where the values in parentheses represent the
parameter size of model.

CLIP
Version

Aircraft CUB DTD Flowers102 Food101 OxfordPets CIFAR-10 CIFAR-100 ImageNet Average

Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel Base Novel

ViT-B/32 22.7 22.2 60.8 20.0 71.9 52.7 84.4 25.0 72.1 72.4 63.8 45.2 79.7 73.5 44.9 37.9 61.0 59.8 62.3 45.4
ViT-B/16 30.3 25.4 61.5 22.0 75.0 55.7 88.1 26.5 78.6 78.6 69.1 54.0 81.0 86.9 48.6 37.5 68.2 67.3 66.7 50.4
ViT-L/14 38.7 33.0 91.9 27.8 78.6 60.5 91.7 32.4 88.5 86.8 79.2 61.1 90.8 93.6 59.3 55.1 75.0 73.9 77.0 58.3

Table A4. Base-to-novel classification performance of ALBM with different CLIP versions.


	Introduction
	Related Works
	The implementation detail of DSS
	Zero-shot performance with class names
	The detail of summary step
	The prompts used in DSS
	Comparison with existing LBM in class-shared and class-specific concept space
	Few-shot performance comparison
	Interpretability verification via sparse prediction
	Relationship between interpretability and model size




