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7. Complete Analysis of NR-IQA metrics
In §3.1 of the main paper, we present accuracy of only top
7 NR-IQA metrics on the subset of SBS180K [43] train set.
Here, in Table 6, we present accuracy of 20 NR-IQA met-
rics and their variants (42 in total) on the same subset. We
make two main observations. First, unsurprisingly, recent
NR-IQA metrics (e.g. PaQ-2-PiQ [97], MUSIQ [41], Q-
Align [88]) are more aligned with human preferences than
the classical ones (e.g. NIQE [98] and BRISQUE [59]),
calling for wider adaptation of more recent metrics in eval-
uating SR models. Second, the IQA dataset on which the
metric is trained affects its accuracy in determining human
preference for SR. For instance, TOPIQ [11] trained using
KonIQ [35] dataset is more aligned with human judgement
(73.06%) than the one trained using FLIVE [97] dataset
(58.19%). Results indicate an opportunity to create a no-
reference IQA dataset exclusively for training NR metrics
for SR.

7.1. Remark on NR-IQA Choices
As discussed in §3, our choice of MUSIQ for weighted
sampling and fine-tuning comes from several considera-
tions. First, on SBS-180K, MUSIQ is highly performant
(see Phase II analysis of §3.1). Second, on HGGT (§3.2),
MUSIQ has the best positive misalignment, meaning it is
the least likely to misrank a positive. It is also relatively
efficient for both inference and back-propagation.

In our application, distinguishing between the quality
of positives would seem to be more significant, since we
are ideally training the SR model in a manner that focuses
on the highest quality images (i.e., incorrect ordering of
the lower-ranked images will not affect our method; hence,
fine-grained differentiation between the high-ranked images
is more important). Nevertheless, it is true that MUSIQ
(like all NR-IQA models evaluated here) does not perform
well on negative misalignment. However, we do not expect
this to have a large impact on training, due to the rarity of
negatives. Specifically, in HGGT-train, only ⇠6% of tuples
contain negatives and, among those, MUSIQ ranks a nega-
tive the highest in ⇠34% of cases. Thus, our AMO model
will be exposed to a negative in only ⇠2% of examples.
Hence, merely for numerical magnitude, discernment for
positives is likely to be more impactful than for negatives.
Of course, this reasoning is somewhat specific to the HGGT
setup.

Further, in terms of evaluation, note that we choose
NIMA and Q-Align specifically because they perform best
on the SBS-180K samples on which MUSIQ fails. Ideally,

this complementarity would help ensure that errors induced
by shortcomings of MUSIQ could potentially be detected
by the other NR-IQA metrics. Nevertheless, as seen in Ta-
ble 7, our experiments with PaQ-2-PiQ (which was among
the best models according to Table 2) show MUSIQ outper-
forms it.

Regardless, our method does not specifically require the
use of MUSIQ. Indeed, we believe further advancements
in NR-IQA models (e.g., approaches specific to SR image
quality, adversarially robust models) will be applicable to
our method as well.

8. Methodological Details
8.1. Sampling Details
The altered sampling (§4.2) is trained identically to the stan-
dard HGGT version, just replacing the uniform nature of the
GT sampling. The only additional parameter is the temper-
ature, ⌧ , which we set to 10 for both SMA and SMP.

8.2. Hardware and Timing
Similar to HGGT, we train on four A100 GPUs for 300K
iterations. This takes ⇠23 and ⇠32 hours for SwinIR and
RealESRGAN, respectively, with an additional ⇠3.5 hours
for fine-tuning.

8.3. Fine-Tuning Details
Unless otherwise noted, we use the same training parame-
ters as HGGT. We fine-tune for only 20,000 steps and set
�Q = 0.05 as the FT MUSIQ weight. For SwinIR and
RealESRGAN, respectively, we change the learning rate to
5 ⇥ 10�6 (halved at 5K steps) and 5 ⇥ 10�5. Recall that,
by default, the adversarial loss is not used (i.e., �A = 0)
during FT (but see §9). Architecturally, LoRA weights are
inserted slightly differently: on SwinIR [50], only the mul-
tilayer perceptions are altered (rank 48), while on the con-
volutional RealESRGAN [84, 85], only the layers in the
Residual-in-Residual Dense Blocks (RRDBs) are altered
(rank 24). This follows other works, including the origi-
nal LoRA paper [36], which only apply LoRA-based fine-
tuning to a subset of layers (e.g., see [26, 46, 53]). Recall
that LoRA cannot increase the capacity (i.e., expressive ca-
pability) of the networks (as the new weights can simply be
merged into the old ones at inference time, which also pre-
vents any run-time penalty to inference), so comparisons to
non-FT models are fair. Fine-tuning is run for 20K steps,
as opposed to the 300K in stage two training. Brief explo-
ration of hyper-parameters (beyond those considered in §5)



Method Acc (%) Method Acc (%) Method Acc (%) Method Acc (%) Method Acc (%)

paq2piq 76.41 arniqa-kadid 71.48 tres 69.98 arniqa-clive 66.81 brisque matlab 61.00
nima 74.91 arniqa-flive 71.30 clipiqa+ vitL14 512 69.98 arniqa-spaq 66.73 wadiqam nr 60.30
musiq 74.47 topiq nr-spaq 71.30 musiq-paq2piq 69.98 arniqa 66.46 topiq nr-flive 58.19
liqe 74.03 arniqa-csiq 71.21 maniqa-pipal 69.63 musiq-ava 66.37 ilniqe 57.92
arniqa-tid 74.03 musiq-spaq 70.86 clipiqa+ rn50 512 69.10 nrqm 65.05 niqe 56.43
qalign 73.77 nima-vgg16-ava 70.77 dbcnn 68.49 cnniqa 63.73 brisque 55.11
topiq nr 73.06 maniqa 70.51 clipiqa 68.40 tres-flive 63.29 niqe matlab 51.94
hyperiqa 72.27 clipiqa+ 70.25 arniqa-live 68.05 pi 62.41 piqe 46.21
liqe mix 71.48 maniqa-kadid 70.16

Table 6. Phase I analysis on SBS180K dataset. Accuracy of 20 NR-IQA metrics and their variants on the subset (1212 image pairs)
of train set of SBS180K dataset. We denote a metric by its ‘Model Name’ as defined in IQA-PyTorch toolbox (https://iqa-
pytorch.readthedocs.io/en/latest/ModelCard.html). We use the default configuration for all metrics and their variants.

Model NR �A
FR Low-Lev. Dist. FR Mid-Lev. Dist. NR High-Lev. Perceptual Quality
PSNR " SSIM " LPIPS # LPIPS-ST # DISTS # MUSIQ " NIMA " Q-Align " TOPIQ "

Gold Standard – – 7 – – – – – 69.64 5.28 3.78 0.69
SwinIR-UPos⇤ – – 7 22.30 0.647 0.169 0.129 0.123 66.39 5.16 3.56 0.62

SwinIR-UPos + FTHP M 0 7 22.17 0.642 0.166 0.123 0.122 68.38 5.23 3.64 0.65
SwinIR-UPos + FTIG M 0.1 7 22.03 0.635 0.168 0.122 0.123 69.37 5.24 3.69 0.66

SwinIR-UPos + FTNNR,IG⇥2 – 0.2 7 22.25 0.646 0.171 0.130 0.124 66.61 5.16 3.56 0.61
SwinIR-UPos + FTNNR,IG⇥5 – 0.5 7 22.20 0.644 0.174 0.134 0.125 66.61 5.16 3.56 0.61
SwinIR-UPos + FTPaQ2PiQ P 0 7 22.29 0.649 0.166 0.120 0.121 67.29 5.18 3.58 0.62

SwinIR-UPos + FT M 0 7 22.01 0.633 0.169 0.123 0.124 69.70 5.26 3.70 0.67
SwinIR-AMO + FT M 0 3 21.77 0.624 0.174 0.121 0.128 70.81 5.29 3.75 0.70

RESRGAN-UPos⇤ – – 7 21.54 0.608 0.233 0.192 0.158 65.93 5.25 3.47 0.63
RESRGAN-UPos + FTHP M 0 7 21.30 0.595 0.226 0.175 0.158 70.28 5.32 3.65 0.69
RESRGAN-UPos + FTIG M 0.1 7 21.14 0.586 0.236 0.182 0.160 72.01 5.35 3.70 0.70

RESRGAN-UPos + FTNNR,IG⇥2 – 0.2 7 21.35 0.600 0.234 0.191 0.157 65.94 5.22 3.45 0.63
RESRGAN-UPos + FTNNR,IG⇥5 – 0.5 7 21.25 0.598 0.237 0.195 0.158 65.78 5.22 3.46 0.63
RESRGAN-UPos + FTPaQ2PiQ P 0 7 21.46 0.605 0.228 0.182 0.157 67.26 5.22 3.51 0.64

RESRGAN-UPos + FT M 0 7 21.09 0.580 0.235 0.179 0.163 72.69 5.37 3.69 0.71
RESRGAN-AMO + FT M 0 3 21.02 0.581 0.228 0.169 0.161 71.67 5.35 3.68 0.71

Table 7. Additional evaluation on held-out HGGT Test-100. As in Table 5 in the main paper, “FR Low-Lev Dist” refers to full-reference
low-level distance metrics; “FR Mid-Lev Dist” and “NR High-Lev. Perceptual Quality” refer to full-reference and no-reference perceptual
metrics, respectively. Second column ( ) indicates that a method works with no human GT ranking data (3), or requires such GT
annotations (7). “Gold Standard” shows the average of best metric value per quintuplet of test GTs. “UPos” denotes the “positives-only”
scenario (uniform sampling from human-ranked positives), the SoTA baseline method from HGGT (marked by ⇤). “FT” refers to fine-
tuning (direct optimization): “FTIG” includes the adversarial loss during FT, “FTNNR,IG⇥2” and “FTNNR,IG⇥5” have no NR term during FT,
but increase the GAN loss (two and five times, respectively), and finally “FTPaQ2PiQ” replaces MUSIQ with PaQ-2-PiQ. The NR column
denotes which NR-IQA model is used (M: MUSIQ, P: PaQ-2-PiQ, –: None), while �A is the adversarial loss weight (the standard HGGT
default for training is 0.1). We also show our best method: AMO+FT, which combines IQA-based sampling with our standard FT settings,
for comparison. Note that AMO+FT is the only method here that does not use human annotations. We remark also that the NR-IQA
models have the following ranges: MUSIQ (0-100), NIMA (0-10), Q-Align (1,5), and TOPIQ (0-1).

yielded minimal changes, likely due to rapid convergence
of the low-rank (i.e., low capacity) weights �.

9. Detailed Results on Ablations and Variations
In this section, we consider additional FT variations: (i) us-
ing a GAN discriminator instead of an NR-IQA model (us-
ing two different loss weights) and (ii) replacing Q (set as
MUSIQ) with a different NR-IQA model (PaQ-2-PiQ). The
point of (i) is to check whether the GAN critic, which is ef-
fectively an NR-IQA model that has been specialized to the
SR model in question, can be used for fine-tuning, instead

of a separate NR-IQA model. For (ii), we wish to check if
our choice of optimized NR metric, MUSIQ, is reasonable.

Our results on these variations are in Table 7. Since FT
optimizes MUSIQ, we focus on the other NR metrics, espe-
cially Q-Align and NIMA (since they perform the best on
examples where MUSIQ fails; see §3.1). First, we find that
including the GAN loss in the standard scenario has a slight
negative effect on the NR metrics; however, removing the
NR metric term and strengthening the adversarial term (i.e.,
“FTNNR,IG⇥2” and “FTNNR,IG⇥5”) has a significantly more
negative impact on the NR evaluations. This suggests that

https://iqa-pytorch.readthedocs.io/en/latest/ModelCard.html
https://iqa-pytorch.readthedocs.io/en/latest/ModelCard.html


Figure 5. Structured Noise due to naive NR-IQA optimization. The left three insets show an image and two close-ups that was fine-tuned
without LoRA, whereas the right three show the effect of using LoRA. Note the patterns that form in the sky and the strangely coloured
pixels that appear around certain edges (e.g., the blue/red grid in the second inset) when LoRA is not used.

the critic network cannot replace the NR-IQA model, even
though it is intuitively similar to one (in that it evaluates
the image quality of a single input, which can be used as a
learning signal). We conjecture this is because the critic is
trained to detect the idiosyncrasies of its associated gener-
ator (at a specific point in time), rather than match human
quality estimates; hence, optimizing it more aggressively
may reduce those specific issues that the critic has detected,
but not necessarily increase general quality.

Second, we tried to replace MUSIQ with PaQ-to-PiQ.
We find that this tends to improve low and mid level distor-
tion (though the relation is less clear for RealESRGAN, es-
pecially with LPIPS-ST), but worsens NIMA and Q-Align.
We therefore choose to stay with MUSIQ for our main re-
sults. In general, we do not wish to claim that MUSIQ is an
optimal starting point for FT; however, it does suggest our
analysis is a useful approach to initially identifying a good
NR-IQA network. Nevertheless, we suspect that using an
alternative NR-IQA model (with sufficient hyper-parameter
exploration), fine-tuning a new model, combining multiple
models, or training a model specific to SR could all be po-
tentially useful future approaches to improving results.

10. Additional Qualitative Examples
10.1. Additional Comparative Samples
Additional comparisons are shown in Fig. 6 (as in Fig. 4).
Our method (AMO or AMO+FT) is universally sharper
and more detailed than UPos (e.g., see the hair in row
three). Further, it can occasionally remove some of the
noise present in the UPos scenario (see the tongue of the red
panda). Importantly, our approach may not generate details
that are identical to the GT, but it does construct sharp image
content without jarring unrealistic artifacts (e.g., see rows
one and four; the plants, rocks, and bricks have slightly dif-
ferent details, but they are plausible and of similar aesthetic
quality nonetheless).

10.2. Additional Naive Optimization Visualizations
In Fig. 5, as in Fig. 3, we show the subtle “grid-like” arti-
facts that appear when naive NR-IQA optimization is per-

formed. In particular, we see spatial patterns form in ho-
mogeneous areas (e.g., stripes in the sky or on the tan
coloured island), while other areas exhibit highly unnatu-
ral colours (e.g., the alternating blue-red pixels on the dark
rock). These small, pixel-scale artifacts are akin to an ad-
versarial attack on MUSIQ; hence, much of this structured
noise is alleviated by applying LoRA (right insets). Other
methods of handling such artifacts, such as an adversarially
robust NR-IQA model, may also be effective, but we leave
this to future work.

11. Additional Results on RealSR
We provide results on the RealSRv3 [9] dataset in Table 8.
Similar to the HGGT test dataset, we find that our method is
superior in terms of every NR-IQA metric, at the expense of
the exact pixel-level details measured by PSNR and SSIM
(following the perception-distortion tradeoff [5]). However,
according to mid-level FR metrics, our method also per-
forms well, obtaining the best scores on LPIPS-ST, and
even on LPIPS and DISTS for SwinIR. This suggests our
method can improve image quality, while maintaining the
most salient perceptual details (e.g., mid-level textures) of
the underlying GT.

12. Comparative Evaluation via User Study
Similar to the HGGT user study, we invite 12 volunteers
to evaluate their preference between SwinIR-AMO+FT and
SwinIR-UPos, using the HGGT Test-100 dataset. Each
volunteer evaluates 25 image pairs (25% of the dataset),
with each image in Test-100 being seen an equal number
of times (namely, three). For each pair (SwinIR-AMO+FT
vs. SwinIR-UPos), we employ an image comparison slider.
This tool places two images on top of each other, and al-
lows volunteers to use a slider to alternate between them
(see Fig. 7 for a visualization). The order of presentation of
the two methods (left vs. right) is randomized to eliminate
bias. For each individual, we obtain a single score, which
is the percentage of the time that they prefer our method
(across those 25 images). The average score across raters
is 69.7% (median: 68.0%; empirical standard error of the



32.77 65.83 70.61 73.07 74.91

26.45 45.26 45.60 46.71 53.20

30.75 48.81 50.42 53.28 54.70
LR Original GT SwinIR-UPos SwinIR-AMO SwinIR-AMO+FT

35.03 48.67 50.48 57.30 65.22

47.17 71.16 71.10 74.23 76.27

41.69 68.72 72.06 73.53 74.73
LR Original GT RESRGAN-UPos RESRGAN-AMO RESRGAN-AMO+FT

Figure 6. Qualitative results with NR-IQA guidance. Following the notation of Table 5, columns 3-5 are (top 3 rows) SwinIR-UPos,
SwinIR-AMO, and SwinIR-AMO + FT, and (bottom 3 rows) Real-ESRGAN-UPos, Real-ESRGAN-AMO, and Real-ESRGAN-AMO +
FT. We show MUSIQ scores in insets. Qualitatively, we see improved performance as we move across the ‘UPos’, ‘AMO’, and ‘AMO-FT’
methods, particularly in terms of sharpness and detail generation. Zoom in for details.



Model FR Low-Lev. Dist. FR Mid-Lev. Dist. NR High-Lev. Perceptual Quality
PSNR " SSIM " LPIPS # LPIPS-ST # DISTS # MUSIQ " NIMA " Q-Align " TOPIQ "

SwinIR-OrigsOnly 3 26.05 0.746 0.37 0.38 0.20 31.37 4.24 2.88 0.23
SwinIR-UPos⇤ 7 26.02 0.747 0.35 0.37 0.20 33.69 4.31 2.95 0.24
SwinIR-AMO 3 25.99 0.747 0.34 0.37 0.19 34.86 4.32 2.96 0.25

SwinIR-AMO + FT 3 25.96 0.742 0.33 0.35 0.19 39.25 4.37 2.99 0.30

RESRGAN-OrigsOnly 3 25.90 0.758 0.27 0.27 0.16 46.11 4.80 3.40 0.32
RESRGAN-UPos⇤ 7 25.45 0.750 0.28 0.26 0.17 52.74 4.95 3.53 0.41
RESRGAN-AMO 3 25.22 0.745 0.28 0.25 0.17 54.73 4.97 3.57 0.45

RESRGAN-AMO + FT 3 24.71 0.718 0.32 0.24 0.19 65.12 5.03 3.77 0.63

Table 8. Additional evaluation on the RealSRv3 [9]. Following Table 7, we evaluate the four main models on the RealSR V3 dataset,
which consists of 100 test images captured using two DSLR cameras (Canon 5D3 and Nikon D810). Our methods (“AMO” and “AMO +
FT”) achieve the highest no-reference perceptual metric (i.e., NR-IQA) scores, outperforming both “OrigsOnly” (without enhanced GT)
and “UPos” (the SOTA baseline from HGGT, marked by ⇤).

Figure 7. User study example. Users can move the slider to alter-
nate between 2 images.

mean: 4.8%), suggesting our algorithm is preferred over the
HGGT-based UPos approach at a more than 2:1 ratio, de-
spite their use of human annotations, which ours does not
use. Following similar image quality assessment protocols
(e.g., [80]), a simple single-sample one-sided t-test finds the
rater mean significantly above 50% (p < 0.01; 95% confi-
dence interval: [60.2%, 79.1%]).

13. Remark on Evaluation Metric Types and
Nomenclature

The perception-distortion tradeoff [5] necessitates a com-
plex suite of evaluation metrics that consider different as-
pects of the SR outputs, including pixel-level fidelity to a
GT image and standalone image quality. Some works (e.g.,
[90]) even utilize performance on downstream vision tasks

(e.g., detection or segmentation) as a form of checking se-
mantic preservation. In this work, we therefore also include
a continuum of metrics, which we hope will cover various
points along the perception-distortion frontier. These met-
rics are often categorized along two different axes: (i) the
use of a reference and (ii) the level of visual abstraction
(low vs mid vs high).

NR vs FR. The first form of metric categorization is full-
reference (FR) vs no-reference (NR). In general, FR metrics
(which have access to a GT) measure distortion, while NR
metrics (which do not use a GT) measure perceptual quality.
For NR metrics, there is no way to measure distortion; how-
ever, there are many different aspects of perceptual qual-
ity that can be considered, ranging from simple sharpness
to differentiating aesthetic vs technical quality (e.g., [87]).
Hence, it is common (e.g., [89, 90, 95]) to use a set of NR-
IQA models, which presumably complement each other, as
we do (see §3 and §7.1 for the discussion behind our metric
choices). For FR metrics, there is more of a spectrum (i.e.,
they can include some aspects of perceptual information, in
addition to measuring distortion). PSNR and other per-pixel
distances have no notion of perception, operating directly
on pixel values. SSIM is meant to be more perceptual, but is
a simple, hand-crafted similarity operating on colours, lim-
iting its perceptual modelling capabilities [60]. In contrast,
LPIPS and DISTS utilize neural network features, aiming
to capture certain aspects of human vision. They are there-
fore more perceptual than, e.g., PSNR, as they will toler-
ate some pixel differences (distortion) if they improve net-
work activation similarity. Even further along this curve
towards greater perceptual sensitivity is LPIPS-ST, a model
designed specifically to ignore small spatial shifts (which
are devastating to pixel-level distortion measures). Indeed,
in many cases, we find that LPIPS-ST actually agrees with
the NR-IQA perceptual metrics more closely than LPIPS or
DISTS, despite being an FR metric. Hence, FR metrics can
occupy a range across the perception-distortion curve.



Abstraction Level. A separate nomenclature arises based
on the type of information that impacts the model. It is
based on the hierarchical nature of biological vision (e.g.,
[64]), but is also commonly used throughout computer vi-
sion (e.g., [25]). Specifically, we divide visual processes
into low-level, relating to raw colours and 2D geometry
(e.g., edges); mid-level, encompassing “groupings” of more
basic features into patterns and textures, as well as local
3D structures; and high-level, pertaining to semantics (e.g.,
scene classification) and representational abstraction (e.g.,
holistic interpretations of the image). For this reason, we
refer to PSNR and SSIM, which operate directly on colours,
as low-level, while LPIPS and DISTS are mid-level, as they
respond best to textures, image “styles”, and other regional
“grouped” visual elements. We label neural NR-IQA mod-
els, such as MUSIQ, as high-level, as they process the im-
age holistically, taking semantic context into account, as
well as aesthetics, though they may also care about low-
level issues, such as noise and blur. In general, including
in our work, low-level metrics tend to measure distortion,
while mid-level and high-level ones are more related to per-
ceptual quality. However, there may be exceptions: for in-
stance, measuring sharpness via a simple image filter is a
low-level NR metric that targets perceptual quality rather
than distortion (e.g., [78]).

14. Limitations
While our IQA-based method is able to sharpen SR out-
puts, as well as hallucinate aesthetically pleasing details in
most cases, there are still several shortcomings to our ap-
proach. First, higher IQA model score does not guarantee
improved human perceptual quality nor does it strictly en-
sure our outputs are artifact-free. This is related to the dis-
cussion in §4.3 and Fig. 3, where we postulate that some
image changes can improve IQA score despite worsening
perceptual quality (e.g., direct optimization being similar to
an adversarial attack on the quality model). In Fig. 8, row
two, for instance, we see that the SR model fails to predict
the correct image details, leading to incorrect line orienta-
tions and aliasing-like artifacts (though the UPos baseline in
column two arguably has worse artifacts). Second, from a
semantic perspective, certain classes of image content may
require different treatment, the requirements of which NR-
IQA models are not naturally aware. For example, row one
in Fig. 8 demonstrates how super-resolved text can become
mangled. In terms of human preference, it can be argued
that having a blurrier output in such uncertain cases may be
more desirable (i.e., having blurred characters, rather than
wrong characters, could be preferred for text). Nevertheless,
text is notoriously challenging to super-resolve (prompting
development of specialized methods for it [49, 103]); fur-
ther, the UPos baseline suffers from similar artifacts as our
outputs. Overall, we suspect better IQA models or more so-

48.88 61.00 75.24
Original GT RESRGAN-

UPos
RESRGAN-
AMO+FT

73.50 76.39 77.70
Original GT SwinIR-UPos SwinIR-

AMO+FT

Figure 8. Illustration of limitations. We show examples of short-
comings of our method (see Fig. 14), with MUSIQ scores in insets.
In row one, we show the shortcomings of our model with respect
to text, a particularly difficult form of image content. In row two,
we see that our model does still incur artifacts, such as the man-
gled lines in the zoomed inset.

phisticated regularized optimizations (i.e., beyond LoRA)
can mitigate some of the artifacts incurred by our approach.
Handling more semantic issues, such as text hallucination,
may require more specialized models.
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