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Supplementary Material

In this document, we first present a conceptual compari-
son of our setting and approach in Appendix A. We provide
additional details such as data processing (Appendix B),
baseline adaptation (Appendix C), and additional results
(Appendix D). Please refer to the supplementary video for
animations.

A. Conceptual Comparison
Our method relies on fewer assumptions than the prior
works, as shown in Tab. I.

B. Data Processing
We follow the convention of the ARCTIC dataset [14],
defining the canonical space as the configuration where the
articulation axis aligns with the negative z-axis. For scale
normalization, we apply a heuristic to determine an articu-
lation angle that positions the object at a state likely to max-
imize its distance from the origin. Specifically, we set the
articulation angle to π

2 . For the mixer and capsule machine,
and to 0 for the scissors and espresso machine. For all other
objects, we set the articulation angle to π.

C. Baseline Details
OMOMO Adaptation. In the original full-body setting,
OMOMO [35] predicts only the wrist positions in stage one.
Since the OMOMO dataset lacks finger articulation data,
the wrist, being the closest joint to the object, is the natural
choice for applying contact constraints. In contrast, in our
hand-only setting, all joints have the potential to interact
with objects. Limiting contact constraints to the wrist in this
context would be suboptimal. Therefore, we design stage
one to predict all hand joints, applying contact constraints
to each joint. In stage two, we refine the motion predictions
by estimating the hand poses, conditioned on all joints.

ArtiGrasp. We also re-trained ArtiGrasp [79] on our
train/test split and evaluated the dynamic object grasping
and articulation task which performs grasping and articula-
tion in separate stages. Since the object’s initial state has
to be supported by the table in the simulator, we set the
relative change of the object state to be the same without vi-
olating the physical constraint (eg. the goal state should not
penetrate the table). ArtiGrasp cannot reach the object goal
state reliably at every run, unavoidably, the actual object
trajectory from the physics simulator will deviate signifi-
cantly from ours. Moreover, ArtiGrasp employs heuristics

Method
Articulated

Objects
Bimanual

No Grasp
Ref.

Unified

ManipNet [77] ✗ ✓ ✓ ✓

GOAL [60] ✗ ✓ ✓ ✓

IMOS [16] ✗ ✓ ✗ ✓

MACS [54] ✗ ✓ ✓ (✗)
D-Grasp [9] ✗ ✗ ✗ ✓

ArtiGrasp [79] ✓ ✓ ✗ ✓

CAMS [83] ✓ ✗ ✗ ✗

BimArt ✓ ✓ ✓ ✓

Table I. Conceptual Comparison to Prior Works. We highlight
that our work is the only one, which provides all desired func-
tionalities. No Grasp Ref. means that neither initial pose nor
goal pose are given as input. Unified refers to a single model that
can handle various object categories. MACS is only trained on
spheres, hence a bracket is added for the checkmark under Uni-
fied.

transitioning from grasping to articulation, such as dropping
the object on the table and moving the hands apart before
articulating, resulting in low contact and articulation per-
centage. Due to the difficulty in standardizing the setting,
we exclude ArtiGrasp from our quantitative and qualitative
comparisons.

D. Additional Results
Besides providing the penetration percentage at 1cm thresh-
old in the main paper, we additionally provide it at 5mm as
shown in Tab. II.

Method Pen 5mm (%) ↓

GT 30.4

CAMS-B 87.5
MDM-B 66.7
OMOMO-B 74.9

Ours 32.8

Table II. Penetration percentage at the 5mm threshold

To show that we are not overfitting to the ground truth,
we compute the five nearest neighbors in the training set
for each test sequence based on object motions, with the
first frame of object vertices centered at zero. We obtain a
15.08 cm average hand vertex distance with a 4.40cm aver-
age object vertex distance, showing that our generated mo-



Average Microwave Phone Box Ketchup Mixer Waffle Iron Capsule Machine Notebook Scissors Laptop Espresso Machine

U-BPS-Top 0.546 0.608 0.244 0.454 0.387 0.838 0.705 0.513 0.589 0.401 0.484 0.746
PA-BPS-Top 0.342 0.507 0.137 0.415 0.221 0.377 0.427 0.394 0.288 0.093 0.341 0.533
P-BPS-Top 0.258 0.327 0.152 0.373 0.114 0.336 0.413 0.185 0.265 0.081 0.349 0.216

U-BPS-Bottom 0.552 0.651 0.25 0.5 0.387 0.725 0.57 0.572 0.543 0.543 0.523 0.809
PA-BPS-Bottom 0.341 0.482 0.466 0.194 0.377 0.349 0.103 0.36 0.378 0.374 0.263 0.145
P-BPS-Bottom 0.38 0.645 0.173 0.507 0.232 0.46 0.368 0.472 0.27 0.094 0.395 0.536

U-BPS 0.554 0.645 0.247 0.48 0.387 0.763 0.643 0.568 0.562 0.468 0.504 0.807
PA-BPS 0.32 0.487 0.14 0.444 0.199 0.366 0.404 0.35 0.272 0.099 0.36 0.378
P-BPS 0.361 0.603 0.163 0.449 0.208 0.418 0.393 0.453 0.268 0.087 0.373 0.527

Table III. Contact Map Error (in cm) due to BPS mapping. We present the average and per-category contact map errors resulting from
the sparse mapping of BPS features. Both part-agnostic BPS (PA-BPS) and the proposed part BPS (P-BPS) achieve a denser mapping
compared to BPS features without scale normalization (U-BPS), resulting in smaller contact map errors. The proposed part-based BPS
method further enhances mapping density for the top part of the object (which corresponds to the movable part in canonical space), by
allocating equal feature dimensions to individual parts irrespective of their surface area.

Figure I. Sensitivity analysis for wacc (left plot), wpen (middle plot) and wproj (right plot). We perturb each hyperparameter within ±25%
and report the changes in the acceleration, penetration, contact, and articulation metrics.

tions differ from the training ground truth. Please see the
supplementary video for qualitative results.

In Fig. I, we show sensitivity analysis plots for and wacc,
wproj and wpen respectively by perturbing each hyperparam-
eter by ±25% of its original weight. We show the percent-
age change in the acceleration, articulation, contact, and
penetration metrics for each plot. We observe that contact
and articulation are not very sensitive to the hyperparameter
perturbations, and there exists a trade-off between assigning
a higher weight for wacc and assigning a higher weight for
wpen as evident in the first 2 plots in Fig. I. A higher weight
for wacc leads to better motion smoothness but it increases
penetration, and vice versa, when we increase wpen, the mo-
tion gets more jittery.

Qualitatively, we visualize diverse contact maps our
method generates in Fig. III. Fig. II shows the general-
ization ability of our method to intra-class variations in
the HOI4D dataset [40]. Our model is trained in a cross-
category manner and we show the qualitative results for all
six unseen objects.

E. BPS Analysis
We present additional BPS feature analysis in Tab. III, by in-
terpolating the contact values associated with sparse object
vertices mapped by the basis points using [53] and com-
pute the L1 loss for the densified per vertex contact maps
and the ground truth contact maps. A lower error reflects
a denser BPS mapping and better geometric representa-
tion. The results are broken down into cross-category av-
erages and object-specific errors, with errors reported for
the top part, bottom part, and whole object. Both part-
agnostic BPS (PA-BPS) and the proposed part-based BPS
(P-BPS) achieve lower contact errors compared to unnor-
malized BPS (U-BPS) with the same BPS feature dimen-
sions. PA-BPS achieves a lower average contact map error
for the object’s bottom parts as they tend to have a larger
surface area in the ARCTIC dataset [14]. Notably, P-BPS
reduces the contact map error for the objects’ top parts (the
movable component in our canonical space) by allocating
equal feature dimensions to the top and bottom parts.



Figure II. Qualitative Results on HOI4D. We present visualizations of results for six unseen objects from the HOI4D dataset. Each row
illustrates three frames corresponding to the actions of approaching, lifting, and articulating. Notably, our model is trained in a cross-
category way.



Figure III. Contact map visualizations. We present visualizations of the predicted left and right contact maps for seven frames in a
sequence. For each object, we include two examples: a “grab” scenario, where the object’s articulation remains unchanged, and an
“articulate” scenario, where the object undergoes articulation. In the “articulate” examples, the contact region is established at the moving
part and remains consistent throughout the articulation process. In contrast, the “grab” examples reveal shifts in the grasping patterns,
suggesting that one hand holds the object while the other adjusts its contact point. The Vector Heat method [53] is employed to interpolate
the contact values from the sampled object vertices to the full object surface. The predicted contact values are then normalized to a range
between 0 and 0.2 meters. In the resulting visualization, red indicates that the hand should be close to the object’s surface, while blue
signifies that the hand is farther away.


