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1. Methodology
1.1. Model details
The perception component of our model follows a sparse
paradigm [16, 17, 21]. For detection, after obtaining the
initialized object queries Qobj and multi-view visual fea-
tures F , several decoder layers are applied. These lay-
ers include attention mechanisms across object queries, de-
formable aggregation with visual features, and a feedfor-
ward network [16]. The Historical Mot2Det Fusion Mod-
ule, designed by us, follows the above modules to refine the
object queries and detection outputs using historical predic-
tion. For online mapping, the structure is similar to that
used in detection [21]. For multi-head attention, Flash At-
tention [3] is adopted to save GPU memory.

1.2. Loss function
As stated in the End-to-End Learning section of the main
paper, the loss function for each task is divided into regres-
sion and classification components. The losses are defined
as follows:

Ldet = λdet regLdet reg + λdet clsLdet cls,

Lmap = λmap regLmap reg + λmap clsLmap cls,

Lmot = λmot regLmot reg + λmot clsLmot cls,

Lplan = λplan regLplan reg + λplan clsLplan cls,

Ltotal = Ldet + Lmap + Lmot + Lplan.

(1)

The loss weights are set as follows: λdet reg = 0.25,
λdet cls = 2.0, λmap reg = 10.0, λmap cls = 1.0,
λmot reg = 0.05, λmot cls = 0.1, λplan reg = 1.0,
λplan cls = 0.5.

1.3. Notations
As shown in Table 1, we provide a lookup table for nota-
tions used in the paper.

2. Experiments
2.1. Evaluation metrics
Open-loop evaluation. We provide evaluation metrics
for perception, prediction, and planning tasks. The de-
tection and tracking evaluation adheres to standard proto-
cols [2]. For detection, we use mean Average Precision
(mAP) and nuScenes Detection Score (NDS). For tracking,
Average Multi-object Tracking Accuracy (AMOTA), Aver-
age Multi-object Tracking Precision (AMOTP), and Iden-
tity Switches (IDS). The online mapping [21] and motion



Notation Description

Na the number of surrounding agents
Mmot the number of prediction modes
C the feature channels

Tmot the number of future time steps for prediction
Mplan the number of planning modes
Tplan the number of future time steps for planning
K the number of historical motion planning frames stored in the memory queue

Nimg the number of camera views
F multi-view visual features

Qobj object queries
Bobj object anchor boxes
Qmot motion queries
Qplan planning queries
Qm2d historical motion queries used in the Historical Mot2Det Fusion Module
Tm2m the number of time steps that interact with historical motion queries
Qm2m historical motion queries used in the History-Enhanced Motion Prediction Module
Tp2p the number of time steps that interact with historical planning queries
Qp2p historical planning queries used in the History-Enhanced Planning Module
Q∗

mot selected motion queries used in the Step-Level Mot2Plan Interaction Module

Table 1. Notations used in the paper.

prediction [7, 21] evaluations are consistent with previous
works. For online mapping, we use the Average Preci-
sion (AP) for three map classes: lane divider, pedestrian
crossing, and road boundary. The mean Average Preci-
sion (mAP) is then calculated by averaging the AP across
all classes. For motion prediction, we use the minimum
Average Displacement Error (ADE), minimum Final Dis-
placement Error (FDE), Miss Rate (MR), and End-to-End
Prediction Accuracy (EPA) as proposed in ViP3D [5]. For
planning, we use the L2 Displacement Error metric, as used
in VAD [12], and the Collision Rate, as defined in [14, 21].
The Collision Rate addresses two issues in the previous
benchmark [7, 12]: false collisions in certain cases and the
exclusion of the ego vehicle’s heading.

Closed-loop evaluation on NeuroNCAP. Following the
official definition [19], a NeuroNCAP score is computed
for each scenario. A full score is awarded only if a collision
is completely avoided, while partial scores are granted for
successfully reducing impact velocity. Inspired by the 5-
star Euro NCAP rating system [4], the NeuroNCAP score
is calculated as:

NNS =

{
5.0 if no collision,
4.0 · max(0, 1− vi/vr) otherwise.

(2)

where vi is the impact speed as the magnitude of relative
velocity between ego-vehicle and colliding actor, and vr is
the reference impact speed that would occur if no action is

performed. In other words, the score corresponds to a 5-
star rating if collision is entirely avoided, and otherwise the
rating is linearly decreased from four to zero stars at (or
exceeding) the reference impact speed.

2.2. Implementation details
As stated in the Implementation Details section of the main
paper, training is conducted in two stages. The first stage
focuses on the perception task with a batch size of 8 for 100
epochs, while the second stage focuses on end-to-end train-
ing with a batch size of 4 for 15 epochs. The total training
time is approximately 1.5 days. For the model settings, the
number of object queries and map queries is set to 900 and
100, respectively. The feature dimension C is 256. The
backbone, ResNet101, uses pre-trained weights from the
nuImage dataset.

2.3. Online mapping results
The online mapping results on the nuScenes [2] validation
dataset, compared to other methods, are shown in Table 2.

2.4. Comparison with other baselines
We compare our model with two other common methods,
and the results are shown in Table 3.

2.5. Analysis for moving agents
Following the reviewer’s suggestion, we evaluate our model
using a more suitable metric proposed by [25], which better
reflects the end-to-end nature of the task (see Table 4). As



Method APped ↑ APdivider ↑ APboundary ↑ mAP ↑
HDMapNet [13] 14.4 21.7 33.0 23.0
VectorMapNet [18] 36.1 47.3 39.3 40.9
MapTR [15] 56.2 59.8 60.1 58.7

VAD† [12] 40.6 51.5 50.6 47.6
SparseDrive [21] 49.9 57.0 58.4 55.1
BridgeAD-S (Ours) 51.8 56.4 57.5 55.2
BridgeAD-B (Ours) 52.0 57.1 57.9 55.7

Table 2. Comparison of online mapping results for state-of-the-art
online mapping and end-to-end methods. † indicates evaluation
with the official checkpoint.

Method L2 (m) ↓ Col. Rate (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

BEVPlanner [14] 0.27 0.54 0.90 0.57 0.04 0.35 1.80 0.73
BEVPlanner* [14] 0.28 0.42 0.68 0.46 0.04 0.37 1.07 0.49
PARA-Drive* [23] 0.25 0.46 0.74 0.48 0.14 0.23 0.39 0.25
BridgeAD 0.29 0.57 0.92 0.59 0.01 0.05 0.22 0.09

Table 3. Comparison with other baselines. “*” denotes use ego
status as input.

shown, our model outperforms UniAD and ViP3D on these
metrics, which specifically focus on moving agents.

Method mAPf ↑ minADE ↓ minFDE ↓ MR ↓
ViP3D [5] 0.034 3.540 5.943 0.432
UniAD [7] 0.117 1.842 3.258 0.228
BridgeAD 0.139 1.733 3.098 0.210

Table 4. Motion forecasting results with more adapted metrics.
We use 6 modes by default.

2.6. Safety assessments

Following the reviewer’s suggestion, we conduct a safety
assessment of our method, including an analysis of its ro-
bustness to images, as shown in Table 5. Additionally, we
provide an analysis of failure cases and limitations in the
supplementary material.

Image Corruption L2 (m) ↓ Avg. Col. Rate (%) ↓ Avg.

Only front view 0.68 0.22
Blank 2.76 1.83

Default 0.59 0.09

Table 5. Our model’s robustness to images on nuScenes.

2.7. Experiments on the Bench2Drive dataset
We conduct experiments on CARLA v2 simulator using the
Bench2Drive benchmark [11], as shown in Table 6. Our
method outperforms UniAD and VAD in both open-loop
and closed-loop evaluations, showcasing the model’s gen-
eralization ability.

Method Open-loop Closed-loop

Avg. L2 ↓ DS ↑ SR (%) ↑
AD-MLP [26] 3.64 18.05 0.00
UniAD [7] 0.73 45.81 16.36
VAD [12] 0.91 42.35 15.00
BridgeAD 0.71 50.06 22.73

TCP* [24] 1.70 40.70 15.00
TCP-ctrl* [24] - 30.47 7.27
TCP-traj* [24] 1.70 59.90 30.00
ThinkTwice* [10] 0.95 62.44 31.23
DriveAdapter* [9] 1.01 64.22 33.08

Table 6. Experiment on CARLA v2 using the Bench2Drive bench-
mark. “DS” indicates Driving Score, “SR” indicates Success Rate.
“*” denotes expert feature distillation.

2.8. Ablation study
Effects of self-attention in motion prediction. We con-
duct an ablation study to evaluate the effects of step-level
and mode-level self-attention in the motion prediction mod-
ule, as shown in Table 7, similar to Table 7 in the main
paper. Both types of self-attention propagate historical in-
formation across prediction steps and modes, enhancing the
accuracy of motion prediction.

SLA MLA ADE (m) ↓ FDE (m) ↓ EPA ↑
Car / Ped Car / Ped Car / Ped

✓ 0.65 / 0.71 1.02 / 1.00 0.49 / 0.42
✓ 0.64 / 0.71 1.00 / 1.01 0.48 / 0.42

✓ ✓ 0.62 / 0.70 0.98 / 0.99 0.50 / 0.44

Table 7. Ablation study on step-level self-attention (SLA) and
mode-level self-attention (MLA).

Effects of the number of historical frames. We conduct
an ablation study on the number of historical frames K, as
shown in Table 8. The results show that K = 3 achieves the
best balance between efficiency and performance.

2.9. Qualitative results
We present additional qualitative results from both the
open-loop and closed-loop evaluations on the nuScenes [2]



HisFrame Avg. L2 (m) ↓ Avg. Col. Rate (%) ↓
2 0.64 0.13
3 0.59 0.09
4 0.62 0.10

Table 8. Ablation study on the number of historical frames.

dataset. The open-loop evaluation results are shown in Fig-
ure 2. The closed-loop evaluation results, obtained using the
NeuroNCAP [19] simulator, are shown in Figures 3, 4, and
5. Notably, the red line in the closed-loop evaluation rep-
resents the reference trajectory under normal driving condi-
tions, where no safety risk is present.

2.10. Failure cases
We present the failure cases observed in both open-loop and
closed-loop evaluations.

The failure cases from the open-loop evaluation are
shown in Figure 6. In both the first and second cases, the
planned trajectories veer off the road at the curbs (road
boundaries). Adding constraints or post-processing tech-
niques to keep the planned trajectories on the road could
prevent these failures.

The failure case from the closed-loop evaluation is
shown in Figure 7. The planned trajectories steer to avoid
the front truck, but insufficient steering and a lack of decel-
eration still result in a crash. Providing more training data
focused on deceleration or applying post-processing tech-
niques to enforce slowing down could prevent this failure.

3. Limitations and future work
The results of closed-loop testing indicate that our model
still struggles to handle safety-critical scenarios and relies
heavily on complex post-processing. This limitation is a
common issue among existing end-to-end methods. Our ap-
proach mitigates safety-critical scenarios to some extent by
aggregating historical planning information to produce co-
herent driving actions that avoid collisions. However, this
remains insufficient. Exploring effective and efficient so-
lutions, such as training with more data in these situations
or integrating the end-to-end pipeline with reinforcement
learning or rule-based planning, is a promising direction for
future research.

4. Discussion
4.1. Further explanation about our BridgeAD
To better illustrate our method, we provide a further expla-
nation of our key idea. As shown in Figure 1 (a), unlike
previous methods [7, 12, 21], we represent motion and plan-
ning queries as multi-step queries. In contrast to previous

Previous method Ours
(�) Query representation form

(�) Interaction form
��−1 �� ��+1

Figure 1. Further explanation about our BridgeAD.

approaches that use a single query to represent an entire tra-
jectory instance, our method utilizes multiple queries for
a single trajectory. For example, in the planning task on
the nuScenes dataset, where a 3-second future trajectory is
planned at 2 Hz, six queries are used to represent one tra-
jectory instance.

Regarding the interaction mechanism in our method, as
shown in Figure 1 (b), queries are grouped based on time
steps, and those corresponding to the same time step interact
through our designed modules. This approach is applied to
both motion queries for surrounding agents and planning
queries for the ego agent.

4.2. Discussion about belief states
Belief states represent an agent’s probabilistic estimation of
the true state of the environment, given past observations
and actions. They are commonly used in decision-making
under uncertainty, where the full state is not directly observ-
able. By maintaining and updating a belief state, an agent
can make more informed and robust decisions in dynamic or
partially observable environments. Some methods [1, 6, 8]
explore its potential for planning and decision-making in
autonomous driving. Huang et al. [8] proposes a neural
memory-based belief update model for online behavior pre-
diction and a macro-action-based MCTS planner guided by
deep Q-learning. By leveraging long-term multi-modal tra-
jectory predictions and optimizing decision-making under
uncertainty, the approach enhances both efficiency and per-
formance in autonomous driving scenarios.

Our BridgeAD can essentially be seen as encoding be-
lief states. By leveraging historical prediction and planning,
it incorporates belief states into perception, prediction, and
planning, enhancing end-to-end autonomous driving perfor-



mance.

4.3. Discussion about historical predictions
In the motion prediction task, recent works have ex-
plored leveraging historical predictions to improve perfor-
mance. HPNet [22] utilizes historical predictions to achieve
more stable and accurate motion forecasts, while RealMo-
tion [20] operates in a streaming fashion to enhance mo-
tion prediction. In contrast, our BridgeAD incorporates
both historical prediction and planning to optimize the en-
tire pipeline of end-to-end autonomous driving.
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Figure 2. Qualitative results in the open-loop evaluation.
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Figure 3. Qualitative result 1 in the closed-loop evaluation.
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Figure 4. Qualitative result 2 in the closed-loop evaluation.
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Figure 5. Qualitative result 3 in the closed-loop evaluation.



(a) Results in surrounding images (b) Results in BEV (c) GT
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Figure 6. Failure cases in the open-loop evaluation.
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Figure 7. Failure case in the closed-loop evaluation.
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