COB-GS: Clear Object Boundaries in 3DGS Segmentation Based on
Boundary-Adaptive Gaussian Splitting

Supplementary Material

In the supplementary material, we first introduce in de-
tail our proposed two-stage mask generation based on text
prompts in Sec. 6. Next, we present the concrete training
strategy and implementation details of COB-GS in Sec. 7.
In Sec. 8 and Sec. 9, we evaluate the open-vocabulary seg-
mentation capability and the computational cost of COB-GS,
respectively. Finally, additional visualizations of the segmen-
tation results are presented in Sec. 10.

6. Two-Stage Mask Generation Based on Text
Prompts

Mask-based 3D segmentation requires generating a set of
masks for regions of interest from a collection of input im-
ages. Thus, the supervision data consists of V' input views
{I"} corresponding to 2D binary masks {M"}. Each mask
M € RHXW contains discrete values of 0 and 1. The re-
lated work SA3D [4] improves optimization efficiency and
mask view consistency by using Segment Anything Model
(SAM) [9] to iteratively generate the mask for each frame.
With the emergence of foundational models like SAM2 [13],
mask prediction across video sequences has become feasible.

SAM2 retains the encoder-decoder structure of SAM,
where the encoder S, takes an image I as input. Unlike
SAM, SAM2 employs memory attention Sy, to tilize past
frame features f,,, as conditions for generating the current
frame embedding e;:

€1 = Sm(Se<I)vfm) (D

The past frame features f,,, are maintained in a FIFO
memory queue. The decoder takes the current frame embed-
ding ey and the prompts P as input, outputting the corre-
sponding 2D binary mask M:

M = Sq(er, P) @

The prompts P include masks, boxes, points, or texts.
The memory capability of SAM?2 allows it to handle mask
prediction for video sequences, which aligns with the input
view conditions {I"} for the 3DGS task. However, when
SAM?2 performs mask prediction across video sequences, it
encounters challenges with object continuity; specifically,
it may fail to recognize severely occluded objects due to
information discontinuity.To address this issue, we propose
a two-stage mask generation method based on text prompts.
In the coarse mask generation stage, we utilize Grounding
DINO [2] to extract box prompts from the given prompt
frame with lower text confidence, which are then used for

Algorithm 1 Two-stage mask generation

Input: Frame index ¢dzx, text prompt text, image set I,
high confidence C},;q4p, low confidence Cjoy
Result: Updated dictionary video_segments
Initialize dictionary valid_idxzs < {}
Initialize dictionary video_segments + {}
SAM2.init_state([)
image + I[idx]
boxes < Grounding DINO(text, image, Cloy)
SAM2.add_new_box(idx, boxes)
for each frame i, mask in SAM2(idx) do
video_segmentsli] < mask
valid_idzs[i] + if mask is empty then 0 else 1
end for
for each key in valid_idzs do
if valid_idxs[key] = 0 then
bozes < Grounding DINO(text, I[key|, Chign)
if boxes is empty then
continue
end if
SAM2.add_new_box(idx, boxes)
max_sk < FindMaxSub(valid_idzs, key)
for each frame j, mask in SAM2(key, max_sk) do
video_segments[j] + mask
valid_idzs[j] < if mask is empty then 0 else 1
end for
end if
end for

full-sequence mask prediction to obtain preliminary results.
In the fine-grained stage, we leverage Grounding DINO
with higher text confidence to extract box prompts for sub-
sequences within the original sequence that lack mask pre-
diction results, which are then used for subsequence mask
prediction. See Algorithm 1 for details.

7. Implementation Details

Our method is a post-processing method based on the origi-
nal 3D Gaussian Splatting [7]. For each scene, we perform
30,000 iterations of training according to the parameters set
by the original 3DGS to obtain the original 3DGS scene.
COB-GS mainly consists of two components: optimization
process and robustness process. The optimization process
involves alternating between mask optimization and texture
optimization. For the mask optimization stage, we optimize



Table 4. Results on LERF-mask dataset.

Method Figurines Ramen Teatime
mloU (%) mBIoU (%) mloU (%) mBIoU (%) mloU (%) mBIoU (%)

DEVA [5] 46.2 45.1 56.8 51.1 54.3 522
LERF [8] 335 30.6 28.3 14.7 49.7 42.6
SA3D [4] 249 239 7.4 7.0 425 39.2
LangSplat [12] 52.8 50.5 50.4 44.7 69.5 65.6
Gaussian Grouping [15] 69.7 67.9 77.0 68.7 71.7 66.1
COB-GS (ours) 76.3 73.9 78.1 69.2 77.2 72.8
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Figure 9. Visualization of the LERF-mask dataset [15]. The result of the segmentation is obtained under the specified text prompt.

the mask labels and perform Gaussian splitting. The learning
rate of the mask labels is set to 0.1. For the texture optimiza-
tion stage, we optimize the geometry and texture, and the
learning rate of appearance follows the original 3DGS set-
ting. Each stage is trained for 2xV iterations, where V' is
the number of input images. Two sets of hyperparameters
are used for different scene types: for forward scenes, we set
& = 0.5 and perform a total of 22xV iterations of alternating
optimization; for surrounding scenes, we set § = 0.8 and
conduct 14xV iterations of alternating optimization. The
robustness process follows scene optimization and involves
extracting and refining ambiguous boundary Gaussians at
scales smaller than the pixel scale. In our two-stage mask
generation method, we utilize the SAM2 hiera_l model and

the Grounding DINO swinb model. All experiments were
conducted on a single NVIDIA RTX 3090 GPU.

8. Open-Vocabulary 3D Segmentation

To achieve open-vocabulary semantic segmentation, we fol-
low the setup of existing methods [4, 15] and utilize Ground-
ing DINO [2] to generate boxes for input images, similar
to the approach in Sec. 6. We compare our method with
the current state-of-the-art methods for open-vocabulary 3D
segmentation using the LERF-mask dataset, which is anno-
tated from test views of three 3D scenes in the LERF dataset.
The scenes contain severe object occlusions, and the mask
boundaries of the test views are more complex. As shown
in Table 4, our method demonstrates a clear advantage over



current SOTA methods. Visual segmentation comparisons in
Figure 9 reveal that our method provides more accurate seg-
mentation predictions with clear boundaries, while Gaussian
Grouping [ 15] exhibits blurriness in segmentation results.

9. Computation Cost

We evaluate the computational efficiency of COB-GS in
comparison to state-of-the-art 3DGS segmentation methods,
namely the feature-based SAGA [3] and the mask-based
FlashSplat [14]. This evaluation is conducted on the Fortress
scene (V = 42) from the LLFF dataset [10] using a single
NVIDIA RTX 3090 GPU, with results presented in Table 5.
We provide the total time cost (prep time+opt time+seg time)
and the maximum VRAM of the entire reconstruction and
segmentation pipeline. SAGA [3] requires 10,000 iterations
of gradient descent to distill 2D masks into object features
associated with each 3D Gaussian, resulting in substantial
additional training time for scene optimization. Moreover,
object segmentation remains time-consuming due to the need
for network inference. FlashSplat [14] does not offer a mask
extraction method, and assigning labels to each Gaussian
through forward rendering is relatively time-consuming. In
contrast, our extraction process relies entirely on inverse
rendering, which ensures that texture optimization simulta-
neously optimizes scene labels. The optimization time is
comparable to the speed of FlashSplat, and segmentation
requires only filtering the labels.

Prep  Opt Seg Total

Method Time Time Time Time Mem
SAGA [3] 145s 20min 200 ms 2242 min 7.6 G
FlashSplat [14] N/A 24 s 10 ms N/A 24G
COB-GS 4s 24 s 8ms 046min 2.7G

Table 5. Computation cost comparisons over the Fortress scene.
10. More Qualitative Results

To demonstrate the effectiveness of our proposed 3D seg-
mentation method in producing clear object boundaries, we
provide visualizations of 3D segmentation across multiple
scenes, including the Horns, Orchids and Fortress from the
LLFF dataset [10], the Garden from MIP-360 [1], the Bear
from the IN2N dataset [6], and the Pinecone from NeRF [11],
encompassing both forward and surrounding scenes. We ob-
tain masks using text prompts, as described in Sec. 6. The
results shown in Figure 10 clearly demonstrate that the ob-
ject edges in our 3D segmentation results are very clear,
while also maintaining high-quality textures for both the
foreground and background.
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Figure 10. Visualization of 3DGS segmentation. We utilize text prompts to obtain object masks and perform 3D segmentation across
multiple scenes, including Horns, Orchids and Fortress from the LLFF dataset, Garden from MIP-360, Bear from the IN2N dataset, and
Pinecone from NeRF.
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