
CarPlanner: Consistent Auto-regressive Trajectory Planning for Large-scale
Reinforcement Learning in Autonomous Driving

Supplementary Material

A. Training Procedure

Algorithm 1 outlines the training process for the CarPlanner
framework. Notably, during the training of the trajectory
generator, we have the flexibility to employ either RL or IL,
but, in this work, we do not combine RL and IL simultane-
ously, opting instead to explore their distinct characteristics
separately. The definitions of the loss functions are given in
the following.

Loss of non-reactive transition model. The non-reactive
transition model β is trained to simulate agent trajecto-
ries based on the initial state s0. For each data sample
(s0, s

1:N,gt
1:T) ∈ D, the model predicts trajectories s1:N1:T =

β(s0), and the training objective minimizes the L1 loss:

Ltm =
1

T

T∑

t=1

N∑

n=1

∥∥snt − sn,gt
t

∥∥
1
. (5)

Mode selector loss. This contains two parts: cross-entropy
and side-task loss. The cross-entropy loss is defined as:

CrossEntropyLoss(σ, c∗) = −
Nmode∑

i=1

I(ci = c∗) log σi, (6)

where σi is the assigned score for mode ci, Nmode is the
number of candidate modes, and I is the indicator function.
The side-task loss is defined as:

SideTaskLoss(s̄01:T , s
0,gt
1:T) =

1

T

T∑

t=1

∥∥∥s̄0t − s0,gt
t

∥∥∥
1
, (7)

where s̄0t is the output ego future trajectory.

Generator loss with RL. The PPO [31] loss consists of
three parts: policy, value, and entropy loss. The policy loss
is defined as:

PolicyLoss(a0:T−1, d0:T−1,new, d0:T−1, A0:T−1)

=− 1

T

T−1∑

t=0

min (rtAt, clip(rt, 1− ϵ, 1 + ϵ)At) ,
(8)

Algorithm 1 Training Procedure of CarPlanner
1: Input: Dataset D containing initial states s0 and ground-truth

trajectories s0:N,gt
1:T , longitudinal modes clon, discount factor γ,

GAE parameter λ, update interval I .
2: Require: Non-reactive transition model β, mode selector

fselector, policy π, policy old πold.
3: Step 1: Training Transition Model
4: for (s0, s

1:N,gt
1:T) ∈ D do

5: Simulate agent trajectories s1:N1:T ← β(s0)
6: Calculate loss Ltm ← L1Loss(s1:N1:T , s1:N,gt

1:T)
7: Backpropagate and update β using Ltm

8: end for
9: Step 2: Training Selector and Generator

10: Initialize training step ← 0
11: Initialize policy old πold ← π
12: for (s0, s

0,gt
1:T) ∈ D do

13: Non-Reactive Transition Model:
14: Simulate agent trajectories s1:N1:T ← β(s0)
15: Mode Assignment:
16: Determine clat based on s0

17: Concatenate clat and clon to get c
18: Determine positive mode c∗ based on s0,gt

1:T and c
19: Mode Selector Loss:
20: Compute scores σ, s̄01:T ← fselector(s0, c)
21: Lselector ← CrossEntropyLoss(σ, c∗) +

SideTaskLoss(s̄01:T , s
0,gt
1:T)

22: Generator Loss:
23: if Reinforcement Learning (RL) Training then
24: Use πold, s0, c∗, and s1:N1:T to collect rollout data

(s0:T−1, a0:T−1, d0:T−1, V0:T−1, R0:T−1)
25: Compute advantage A0:T−1 and return R̂0:T−1 using

GAE [30]: A0:T−1, R̂0:T−1 ← GAE(R0:T−1, V0:T−1, γ,λ)
26: Compute policy distribution and value estimates:

(d0:T−1,new, V0:T−1,new) ← π(s0:T−1, a0:T−1, c
∗)

27: Lgenerator ← ValueLoss(V0:T−1,new, R̂0:T−1) +
PolicyLoss(d0:T−1,new, d0:T−1, A0:T−1) −
Entropy(d0:T−1,new)

28: else if Imitation Learning (IL) Training then
29: Use π, s0, c∗, and s1:N1:T to collect action sequence

a0:T−1

30: Stack action sequence as ego-planned trajectory
s01:T ← Stack(a0:T−1)

31: Lgenerator ← L1Loss(s01:T , s
0,gt
1:T)

32: end if
33: Overall Loss:
34: L ← Lselector + Lgenerator

35: Backpropagate and update fselector,π using L
36: Policy Update:
37: Increment training step ← training step +1
38: if training step % I == 0 then
39: Update πold ← π
40: end if
41: end for

where the ratio rt is given by rt = Prob(at,dt,new)
Prob(at,dt)

, dt,new

and dt are the policy distributions (mean and standard devi-
ation of Gaussian distribution) at time step t induced by π
and πold respectively, the function Prob(a, d) calculates the
probability of a given action a under a distribution d, and
At is the advantage estimated using GAE [30]. The value
and entropy loss are defined as:

ValueLoss(V0:T−1,new, R̂0:T−1) =
1

T

T−1∑

t=0

∥∥∥Vt,new − R̂t

∥∥∥
2

2
,

(9)

Entropy(d0:T−1,new) =
1

T

T−1∑

t=0

H(dt,new), (10)

where Vt,new and R̂t are the predicted and actual returns,
and H represents the entropy of the policy distribution d.
Generator loss with IL. In IL, the generator minimizes the
trajectory error between the ego-planned trajectory s01:T and
the ground-truth trajectory s0,gt

1:T . The loss is defined as:

Lgenerator =
1

T

T∑

t=1

∥∥∥s0t − s0,gt
t

∥∥∥
1
. (11)

B. Implementation Details
The hyperparameters of model architecture, PPO-related
parameters, and loss weights are summarized in Tab. 5. The
magnitudes of value, policy, and entropy loss are 103, 100,
and 10−3, respectively. The trajectory generator generates
trajectories with a time horizon of 8 seconds at 1-second
intervals, corresponding to time horizon T = 8. During
testing, these trajectories are interpolated to 0.1-second in-
tervals. The weight of scores generated by the rule and
mode selectors is set to a ratio of 1 : 0.3. In cases where
no ego candidate trajectory satisfies the safety criteria eval-
uated by the rule selector, an emergency stop is triggered.
For the Test14-Random benchmark, a replanning frequency
of 10Hz is employed, adhering to the official nuPlan sim-
ulation configuration. In contrast, for the Reduced-Val14
benchmark, a replanning frequency of 1Hz is used to en-
sure a fair comparison with Gen-Drive [18].

C. Ablation Study on RL Training
In this part, we examine the training efficiency of CarPlan-
ner, performance of vanilla and consistent auto-regressive
frameworks, the use of reactive and non-reactive model in
RL training, and the impact of varying the time horizon.
Training efficiency. We compare the efficiency of our
model-based framework with that of ScenarioNet [24],
which is an open-source platform for model-free RL train-
ing in real-world datasets [2, 9]. As shown in Tab. 6, Car-
Planner achieves a remarkable improvement in sampling ef-

Parameter Value

Feature dimension D 256
Static point dimension Dm 9
Agent pose dimension Da 10
Activation ReLU
Number of layers 3
Number of attention heads 8
Dropout 0.1

discount factor γ 0.1
GAE parameter λ 0.9
Clip range ϵ 0.2
Update interval I 8

Weight of selector loss 1
Weight of value loss 3
Weight of policy loss 100
Weight of entropy loss 0.001
Weight of IL loss 1

Table 5. Hyperparameters of model architecture, PPO-related pa-
rameters, and loss weights.

Planner CLS-NR (↑) Efficiency
(samples/sec, ↑) Num. Samples Train Time

ScenarioNet [24] 55.60 25.72 7,798,472 3d12h11m38s
CarPlanner-IL 93.41 1,181.46 70,487,200 16h34m12s

CarPlanner 94.07 1,632.25 70,487,200 11h59m44s

Table 6. Comparison of training efficiency with model-free set-
tings. Experimental results are based on the Test14-Random non-
reactive benchmark.

Design Choices Closed-loop metrics (↑)

Model Type
Random
Sample

Guide
Reward

CLS-NR S-CR S-Area S-PR S-Comfort

Vanilla
✓ Progress 67.56 ± 0.38 90.97 ± 0.78 94.64 ± 1.72 72.17 ± 0.21 64.21 ± 1.29
✓ DE 86.89 ± 0.28 97.34 ± 0.37 96.36 ± 0.18 89.90 ± 0.11 94.03 ± 0.65

Consistent
✗ FE 88.14 96.86 98.43 91.39 73.73
✗ DE 94.07 99.22 99.22 95.06 91.09

Table 7. Comparison of vanilla and consistent auto-regressive
frameworks with different guide reward design. Experimental re-
sults are based on the Test14-Random non-reactive benchmark.

Model Loss CLS-NR (↑) Consistent Ratio
Lat (↑)

Consistent Ratio
Lon (↑)

Vanilla RL 86.89 ± 0.28 20.00 ± 0.10 8.33 ± 0.00
PLUTO [3] IL 91.92 62.45 41.80
Consistent IL 93.41 68.26 43.01
Consistent RL 94.07 79.58 43.03

Table 8. Comparison for consistency. Experimental results are
based on the Test14-Random non-reactive benchmark.

ficiency, outperforming ScenarioNet by two orders of mag-
nitude. Furthermore, CarPlanner not only excels in ef-

Closed-loop metrics (↑)
Transition Model CLS-NR S-CR S-Area S-PR S-Comfort

Reactive 91.03 96.92 99.23 91.28 90.00
Non-reactive 94.07 99.22 99.22 95.06 91.09

Table 9. Comparison of the usage of reactive and non-reactive
transition models. Experimental results are based on the Test14-
Random non-reactive benchmark.

Figure 4. Performance of different training time horizons under
different testing time horizons. The value in each cell is the CLS-
NR metric on the Test14-Random non-reactive benchmark.

ficiency but also achieves SOTA performance, surpassing
ScenarioNet by a wide margin.
Vanilla vs. consistent auto-regressive framework. The
results are shown in Tabs. 7 and 8. The consistent auto-
regressive framework generates multi-modal trajectories by
conditioning on mode representations. In contrast, the
vanilla framework relies on random sampling from the ac-
tion Gaussian distribution to produce multi-modal trajec-
tories. To ensure comparability in the number of modes
generated by both frameworks, we sample 60 trajectories in
parallel for the vanilla framework. Given that random sam-
pling introduces variability, we average the results across 3
random seeds. For the consistent framework, we use dis-
placement error (DE) and final error (FE) as guide func-
tions to assist the policy in generating mode-aligned trajec-
tories. For the vanilla framework, DE is compared against a
progress reward, which encourages longitudinal movement
along the route while discouraging excessive lateral devia-
tions that move the vehicle too far from any possible route.
The consistent ratio computes the ratio of generated trajec-
tories that fall in their corresponding modes in longitudinal
and lateral directions separately.

Overall, our proposed consistent framework outperforms
the vanilla framework in terms of closed-loop performance,
highlighting the benefits of incorporating consistency. Fur-

thermore, RL provides more consistant trajectories than the
vanilla framework and IL-based methods. Additionally, we
find that DE serves as an effective guide function for policy
training, further enhancing closed-loop performance.
Reactive vs. non-reactive transition model. We compare
the performance of the CarPlanner framework when trained
with reactive and non-reactive transition models. The reac-
tive transition model shares a similar architecture with the
auto-regressive planner for the ego vehicle, utilizing rela-
tive pose encoding [43] as the backbone network to extract
features of traffic agents and predict their subsequent poses.
The training loss and hyperparameters are consistent with
those used for the non-reactive transition model. As shown
in Tab. 9, except for the S-Area metric, using non-reactive
transition model outperforms the reactive transition model
in our current implementation. The primary difference lies
in the assumptions about traffic agents: the reactive transi-
tion model assumes that the ego vehicle can negotiate with
traffic agents and share the same priority, whereas in the
non-reactive model, traffic agents do not respond to the ego
vehicle, effectively assigning them higher priority. A repre-
sentative example is presented in Fig. 5. When trained with
the reactive transition model, the planner assumes pedestri-
ans will yield to the vehicle, leading it to attempt to move
forward. However, at tsim = 12s, the planner collides with
pedestrians, triggering an emergency brake, which nega-
tively impacts safety, progress, and comfort metrics. Al-
though the performance of using reactive transition model
is not satisfied currently, it is a more realistic assumption
and we will further investigate this in future work.
Time horizon. We evaluate the CarPlanner framework by
training it with different time horizons, including 1, 3, 5,
and 8 seconds, and testing the planners in each time hori-
zon. The results in Fig. 4 confirm that increasing the time
horizon has a positive effect on the performance for both
training and testing. A special case is when the training time
horizon is set to 1, all tested time horizons exhibit poor per-
formance, highlighting the importance of multi-step learn-
ing in RL. Additionally, the observation that increasing the
training time horizon enhances closed-loop performance
suggests the potential for further improvements by extend-
ing the time horizon beyond 8 seconds. However, due to
current limitations in data preparation, which is designed
for horizons up to 8 seconds, expanding the time horizon
would not provide map information or ground-truth trajec-
tories, hindering further analysis. Consequently, we leave
this exploration for future work.

D. Comparison with Differentiable Loss
In typical IL setting, the supervision signal provided to
the trajectory generator is the displacement error (DE) be-
tween the ego-planned trajectory and the ground-truth tra-
jectory. Several works [3, 17, 35] propose to convert non-

tsim = 11s tsim = 12stsim = 10stsim = 0s tsim = 13s
!"
#$
%&
'(
)*+
&

,&
'(
)*+
&

Metric Score

CLS-NR 0.0

S-CR 0.0
S-TTC 0.0
S-Area 100.0
S-PR 61.16

S-Comfort 0.0

Metric Score

CLS-NR 96.78

S-CR 100.0
S-TTC 100.0
S-Area 100.0
S-PR 91.7

S-Comfort 100.0

Figure 5. Qualitative comparison of using reactive and non-reactive transition model in non-reactive environments. The scenario is
annotated as waiting for pedestrian to cross. In each frame shot, ego vehicle is marked as green. Traffic agents are marked as
sky blue. Lineplot with blue is the ego planned trajectory.

Supervision Signals Closed-loop metrics (↑) Open-loop metrics (↓)
Loss
Type DE Col Area CLS-NR S-CR S-Area S-PR S-Comfort Col

Mean [Min, Max]
Area

Mean [Min, Max]

IL

✓ ✗ ✗ 93.41 98.85 98.85 93.87 96.15 0.17 [0.00, 0.47] 0.09 [0.00, 0.40]
✓ ✓ ✗ 93.67 99.23 98.85 94.63 94.23 0.16 [0.00, 0.43] 0.07 [0.00, 0.27]
✓ ✗ ✓ 93.12 98.46 98.84 92.88 94.21 0.15 [0.00, 0.44] 0.08 [0.00, 0.30]
✓ ✓ ✓ 93.32 98.46 98.46 94.05 95.77 0.15 [0.00, 0.43] 0.09 [0.00, 0.39]

RL ✓ ✗ ✗ 90.44 97.49 96.91 93.33 90.73 0.17 [0.00, 0.49] 0.14 [0.00, 0.51]
✓ ✓ ✓ 94.07 99.22 99.22 95.06 91.09 0.12 [0.00, 0.39] 0.05 [0.00, 0.22]

Table 10. Comparison with different loss types and supervision signals. Closed-loop results are based on the Test14-Random non-reactive
benchmark. Open-loop results are on validation set.

differentiable metrics, such as avoiding collision (Col) and
adherence to drivable area (Area), into differentiable loss
functions that can directly backpropagate to the generator.
In contrast, CarPlanner leverages an RL framework, which
introduces surrogate objectives to indirectly optimize these
non-differentiable metrics.

In this part, we compare these two approaches which
provide rich supervision signals to the trajectory generator.
The results are summarized in Tab. 10. In IL training, the
Col and Area metrics are converted into differentiable loss
functions, whereas in RL training, Col and Area are treated
as reward functions, contributing to the quality reward as
described in the main paper. It is important to note that
the implementations for differentiable loss functions and re-
ward functions are identical, except that gradient flow is en-
abled for differentiable loss functions. The open-loop met-
rics compute the Col and Area values across all candidate
multi-modal trajectories, with the Mean, Min, and Max re-
ferring to the mean, minimum, and maximum values of the
Col and Area metrics within the candidate trajectory set.

Our findings suggest that incorporating Col loss bene-
fits the open-loop Col metric and improves the closed-loop
S-CR metrics, thereby enhancing closed-loop performance.
However, incorporating Area loss results in better open-
loop Area metrics but deteriorates closed-loop performance.
Compared to differentiable loss functions, RL with Col and
Area as quality rewards yields the trajectory set with the
highest overall quality, as evidenced by smaller Mean and
Max metrics in open-loop metrics. This improvement can
be attributed to RL’s ability to optimize the reward-to-go
using surrogate objectives that account for future rewards,
while differentiable loss functions are limited to timewise-
aligned optimization in our current implementation. This
distinction is illustrated in Fig. 6: in (a), the loss at time
step t is directly computed from s0t , meaning that during
backward propagation, the loss at time step t cannot influ-
ence the optimization of prior time steps. In (b), however,
the non-differentiable reward is aggregated into a return
(reward-to-go), which serves as a reference for computing
the loss at time step t. Through this process, the reward at

Design Choices Closed-loop metrics (↑)
Loss
Type

Model
Type

Mode
Type

Mode
Dropout

Scorer
Side Task

Ego-history
Dropout

Backbone
Sharing CLS-NR S-CR S-Area S-PR S-Comfort

IL
Vanilla - - - ✓ - 86.48 97.09 97.29 88.05 94.19

Consistent Lon ✗ ✓ ✓ ✓ 88.79 96.67 96.08 89.63 94.90
Consistent Lon-Lat ✓ ✓ ✓ ✓ 93.41 98.85 98.85 93.87 96.15

RL
Vanilla - - - ✗ - 85.56 97.27 95.70 89.17 93.36

Consistent Lon ✗ ✓ ✗ ✗ 90.57 97.30 97.68 92.20 94.59
Consistent Lon-Lat ✓ ✓ ✗ ✗ 94.07 99.22 99.22 95.06 91.09

Table 11. Effect of different mode representations. Experimental results are based on the Test14-Random non-reactive benchmark.

!"#$$%&

!"#$$%&

s01

L1

s02

L2

!

!

s0T

LT

s01

R̂1

R1

L1

s02

R̂2

R2

L2

!

!

!

!

s0T

R̂T

RT

LT

!"#!$%&&'(')*%"+,'!,-..

!+#!/0

"#$%&$'
(%)*+!"#$%&'()*

+,#-$#%
.-&)/,0)!"#$%&'()*

1$23-$#%

Figure 6. The computational graph of differentiable loss (a) and
RL (b) framework for optimizing same metrics such as displace-
ment errors, collision avoidance, and adherence to drivable area.

time step t can influence the trajectory at earlier time steps
t′ (t′ < t). In the future, we aim to combine the advantages
of differentiable loss which can provide low-variance gra-

dients, and RL which can provide long-term foresight, by
model-based RL optimization techniques [6, 13].

E. Effect of Mode Representation
In this part, we examine the impact of mode representations
on performance. The results are presented in Tab. 11. For
both the vanilla and consistent frameworks, we disable the
use of random sampling to focus solely on mode-aligned
trajectories. As a result, the vanilla framework can only
generate single-modal trajectories, leading to the lowest
performance. In the consistent framework, we explore two
types of mode representations: Lon and Lon-Lat. The Lon
representation assigns modes based on longitudinal move-
ments along the route, whereas the Lon-Lat representation
decomposes modes by both longitudinal and lateral move-
ments. Aligned with the main paper, we use ego-history
dropout and backbone sharing only for IL training. For the
Lon representation, we close mode dropout since it does
not rely on any map or agent representation in initial state.
The results indicate that introducing consistency provides
greater benefits to RL training, with the Lon-Lat represen-
tation proving to be more effective than the Lon representa-
tion. This suggests that decomposing mode representations
into both longitudinal and lateral components enhances the
model’s ability by providing more explicit mode informa-
tion.

