
Closed-Loop Supervised Fine-Tuning of Tokenized Traffic Models

Supplementary Material

7. Supplementary videos

We provide the following videos as part of the supplemen-
tary material. All videos are carefully edited and thoroughly
annotated, offering additional qualitative results to support
our paper. Please note that all videos are without sound.
• tldr highlights.mp4: The most interesting behav-

iors generated by our model. If you are short on time, we
recommend watching this video.

• parking lot.mp4: The busy parking lot scenario
shown in the main paper.

• ped cyc.mp4: Interesting behaviors for pedestrians
and cyclists.

• lane changing.mp4: Lane-changing scenario in-
volving interactions between multiple agents.

• bc compounding error.mp4: This video provides
a real-world example of covariate shift, demonstrating
how the BC policy suffers from compounding errors.

• more behaviors.mp4: If you have time, enjoy ad-
ditional interesting behaviors generated by our model.
These include exiting parking lots, making U-turns, stop-
ping at stop signs, obeying traffic lights, near-accident
scenarios, and more.

Additional videos are available on the homepage of this pa-
per1.

8. Full algorithm

To complement the algorithm in the main paper, we provide
the detailed and complete algorithm for BC pre-training,
followed by CAT-K fine-tuning, in Algorithm 2. Our
BC pre-training follows Trajeglish and SMART, which are
identical when no data augmentation is applied.

9. Implementation details

Our implementation is based on the open-source repository
of SMART2. We made the following changes, as we believe
they may improve performance:
• Preprocessing agent trajectories using linear interpola-

tion.
• Adding additional HD map elements, such as speed

bumps.
• Setting the learning rate decay to 1% instead of to 0%.
• Resolving duplicated tokens in the action token vocabu-

lary.
• Removing data augmentation applied to the tokenization

of map polylines and agent trajectories, as it only im-
1https://zhejz.github.io/catk
2https://github.com/rainmaker22/SMART

Algorithm 2 BC pre-training and CAT-K fine-tuning
1: Input: Policy ωω, action token vocabulary V , dataset D
2: Pre-train ωω(ct | ĥt,M) with BC until convergence
3: repeat ε BC pre-training
4: Sample a traffic scenario {ŝ0:T ,M}.
5: Init rollout state s0 = ŝ0.

ε Sequential tokenization following Trajeglish
6: for t in [0, . . . , T → 1] do

7: Tokenization for each agent i ↑ {1, . . . , N}
c
i

t
= argmin

c→{1,...,|V |}
d
(
f(si

t
, xc)→ ŝ

i

t+1

)
.

8: Save ct as the GT labels ĉt.
9: Get next rollout state s

i

t+1. (Eq. 3)
10: end for

11: Batched forward pass with causal masking
ωω(c1:T | ĉ0:T↑1,M).

12: Update ϑ by minimizing the cross entropy loss Eq. 5
with GT labels ĉ.

13: until convergence
14: repeat ε Closed-loop supervised fine-tuning
15: Sample a traffic scenario {ŝ0:T ,M}
16: Init rollout state s0 = ŝ0 ε CAT-K Rollout
17: for t in [0, . . . , T → 1] do ε T steps
18: for i in [1, . . . , N] do ε N agents
19: One step forward pass policy ω with previ-

ous rollout states.
20: Get action index for rollout ci

t
. (Eq. 1)

21: Get next rollout state s
i

t+1. (Eq. 3)
22: Compute target ĉi

t
. (Eq. 4)

23: Save forward-pass output logits of this step
for later training.

24: end for

25: end for

26: Update ϑ by minimizing Lω(s0:T , ĉ1:T ,M). (Eq. 5)
27: until convergence

proves performance for zero-shot transfer from NuPlan
to WOSAC but significantly decreases performance when
the model is both trained and validated on WOSAC [35].
Apart from these changes, we use the same model archi-

tecture, hyperparameters, and other settings as provided in
the open-source repository. While SMART-tiny was orig-
inally trained on 32 NVIDIA TESLA V100 GPUs for 23
hours, we use 8 NVIDIA A100 GPUs for all our experi-
ments. Our reproduced SMART-tiny model is trained for
32 hours (32 epochs) with BC. We finetune this BC base-
line model with CAT-K rollout for 25 hours (10 epochs) to
obtain our final model, SMART-tiny-CLSFT, which is sub-

https://zhejz.github.io/catk
https://github.com/rainmaker22/SMART

Leaderboard, test split
Method

Realism
meta

metric↓

Linear
speed

likeli.↓

Linear
acc.

likeli.↓

Angular
speed

likeli.↓

Angular
acc.

likeli.↓

Distance to
nearest

object likeli.↓

Collision
likeli.
↓

Time to
collision
likeli.↓

Distance to
road edge

likeli.↓

Offroad
likeli.
↓

min
ADE
↔

SMART-tiny-CLSFT (ours) 0.7702 0.3868 0.4066 0.5201 0.6589 0.3923 0.9702 0.8356 0.6814 0.9523 1.3068
UniMM [16] 0.7683 0.3836 0.4159 0.5168 0.6491 0.3911 0.9679 0.8347 0.6791 0.9506 1.2947
SMART-large [35] 0.7614 0.3786 0.4134 0.4952 0.6270 0.3872 0.9632 0.8346 0.6761 0.9403 1.3728
KiGRAS [43] 0.7597 0.3704 0.3784 0.4962 0.6314 0.3867 0.9619 0.8373 0.6723 0.9431 1.4383
SMART-tiny [35] 0.7591 0.3733 0.4082 0.4945 0.6277 0.3835 0.9601 0.8338 0.6709 0.9401 1.4062
FDriver-tiny 0.7584 0.3661 0.3669 0.4876 0.6248 0.3840 0.9641 0.8366 0.6688 0.9446 1.4475
SMART [35] 0.7511 0.3646 0.4057 0.4231 0.5845 0.3769 0.9655 0.8318 0.6590 0.9363 1.5447
BehaviorGPT [47] 0.7473 0.3615 0.3365 0.4806 0.5544 0.3834 0.9537 0.8308 0.6702 0.9349 1.4147
GUMP [9] 0.7431 0.3569 0.4111 0.5089 0.6353 0.3707 0.9403 0.8276 0.6686 0.9028 1.6031

SMART-tiny (we reproduced)
not on the public leaderboard 0.7671 0.3781 0.4026 0.5183 0.6571 0.3899 0.9653 0.8346 0.6788 0.9507 1.3587

Table 4. Results on the WOSAC 2024 leaderboard [17] accessed on March 14, 2025. Realism Meta Metric is the key metric used for
ranking. All other metrics contribute to the realism meta metric, except for the minADE, which has no effect on the ranking. Note that
on the public leaderboard [17] our method appears under the name “SMART-tiny-CLSFT” (Closed-Loop Supervised Fine-Tuning), and
our reproduced SMART-tiny is not published to the public leaderboard. Here likeli. is the abbreviation of likelihood, and acc. stands for
acceleration.

mitted to the leaderboard. Performing inference and gen-
erating the submission file for the validation split (44,097
scenarios) together requires 3 hours, the same as for the test
split (44,920 scenarios).

10. Additional experiment results

10.1. WOSAC leaderboard

In Tab. 4 we provide the results of all metrics for leading
entries on the WOSAC leaderboard3, accessed before the
camera-ready deadline of CVPR 2025 (March 14, 2025).
We also provide the results of our reproduced SMART-
tiny, trained via BC and used as the starting point for our
fine-tuning experiments. Our method achieves the best per-
formance across nearly all metrics. Notably, a concurrent
work, UniMM [16] (previously called MM-GPT), has re-
cently made multiple submissions and achieved a high rank-
ing on the leaderboard. Nevertheless, our method still out-
performs the best UniMM model in the majority of the met-
rics.

10.2. Ablation

In Tab. 5, we provide additional ablation studies we con-
ducted. Our method, CAT-K fine-tuning with K = 32,
achieves the overall best performance. Only on the map-
based metrics we are slightly outperformed by “Trajeglish
top-5, sampled w/ policy prob.”, but the difference is in-
significant. The “sampled w/ policy prob.” version of Tra-
jeglish’s noisy tokenization and SMART’s trajectory pertur-
bation is an on-policy variation of the original data augmen-
tation, where the K closest-to-GT tokens are sampled using

3https://waymo.com/open/challenges/2024/sim-
agents/

the probability predicted by the policy rather than using the
negative distance. These on-policy versions perform bet-
ter than the off-policy data augmentation, but their perfor-
mance is still worse than our CAT-K fine-tuning. For top-K
sampling, adding distance based filtering or distance based
sampling improves the performance, but they still cannot
match the performance of our method. For the original ver-
sions of Trajeglish’s and SMART’s data augmentation, a
thorough search of the hyperparameters confirms the con-
clusion drawn in the Trajeglish and SMART papers: Off-
policy data augmentation does not significantly improve the
performance on the WOSAC leaderboard.

Our CAT-K rollout can be seen as a special case of top-
K with distance based sampling, where a very low temper-
ature is used in the distance-based sampling, ensuring that
the closest-to-GT token is selected deterministically. For
example, “Top-32 + distance based sampling” with a sam-
pling temperature ϖ ↗ 0 is equivalent to CAT-32 rollout.

10.3. GMM-based ego policy

In Tab. 6 we present additional ablation studies for train-
ing and fine-tuning the GMM ego policy. Inspired by the
training strategy used in multimodal motion prediction, we
experimented with applying hard-assignment to train the
BC policy, aiming to mitigate the mode-averaging prob-
lem in the GMM. Specifically, at each time step and for
each agent, we train only the Gaussian mixture compo-
nent that is closest to the GT, leaving the other components
untrained. However, this approach did not work, and the
training diverged. We then investigate the impact of Tra-
jeglish’s and SMART’s data augmentation on fine-tuning
the ego policy. The results indicate that the effectiveness of
these off-policy data augmentation methods is marginal: the

https://waymo.com/open/challenges/2024/sim-agents/
https://waymo.com/open/challenges/2024/sim-agents/

Local val. split
Method

Criterion
of topK

K for
topK

Sampled
from

Next
target

RMM
↓

Kinematic
metrics ↓

Interactive
metrics ↓

Map-based
metrics ↓

min
ADE ↔

BC pre-training - - - GT 0.7581 0.4512 0.8076 0.8697 1.3152
CAT-32 (submitted to leaderboard) prob - closest GT 0.7616 0.4583 0.8105 0.8720 1.3105

Trajeglish’s noisy
tokenization

neg. dist. 5 neg. dist. GT 0.7562 0.4469 0.8074 0.8673 1.3459
neg. dist. 5 uniform GT 0.7554 0.4467 0.8069 0.8655 1.3404
neg. dist. 16 neg. dist. GT 0.7486 0.4336 0.8031 0.8585 1.4811
neg. dist. 16 uniform GT 0.7481 0.4315 0.8033 0.8581 1.5012
neg. dist. 32 neg. dist. GT 0.7401 0.4174 0.7985 0.8493 1.6669
neg. dist. 32 uniform GT 0.7412 0.4177 0.7987 0.8521 1.6715
neg. dist. 64 neg. dist. GT 0.7303 0.4005 0.7906 0.8413 1.9083
neg. dist. 64 uniform GT 0.7295 0.3994 0.7890 0.8416 1.9307

SMART’s trajectory
perturbation

neg. dist. 5 neg. dist. RO 0.7560 0.4469 0.8069 0.8673 1.3514
neg. dist. 5 uniform RO 0.7553 0.4468 0.8074 0.8647 1.3566
neg. dist. 16 neg. dist. RO 0.7495 0.4329 0.8035 0.8609 1.4958
neg. dist. 16 uniform RO 0.7478 0.4317 0.8029 0.8576 1.4890
neg. dist. 32 neg. dist. RO 0.7407 0.4190 0.7985 0.8503 1.6472
neg. dist. 32 uniform RO 0.7403 0.4179 0.7986 0.8497 1.6568
neg. dist. 64 neg. dist. RO 0.7309 0.4012 0.7917 0.8411 1.8701
neg. dist. 64 uniform RO 0.7284 0.3962 0.7879 0.8417 1.9574

Top-16 prob 16 prob GT 0.6439 0.3309 0.6912 0.7619 1.8744
Top-16 + distance filter prob 16 prob GT 0.6904 0.3375 0.7489 0.8169 1.7991
Top-16 + distance based sampling prob 16 neg. dist. GT 0.7233 0.3675 0.7808 0.8528 1.4876

Top-32 prob 32 prob GT 0.6395 0.3324 0.6882 0.7522 1.8961
Top-32 + distance filter prob 32 prob GT 0.6950 0.3400 0.7560 0.8193 1.8194
Top-32 + distance based sampling prob 32 neg. dist. GT 0.7229 0.3663 0.7843 0.8477 1.6470

Top-64 prob 64 prob GT 0.6381 0.3318 0.6846 0.7535 1.9117
Top-64 + distance filter prob 64 prob GT 0.6979 0.3407 0.7590 0.8234 1.8172
Top-64 + distance based sampling prob 64 neg. dist. GT 0.7208 0.3660 0.7823 0.8446 1.7260

Trajeglish top-5, sampled w/ policy prob. neg. dist. 5 prob GT 0.7596 0.4513 0.8089 0.8723 1.3116
Trajeglish top-32, sampled w/ policy prob. neg. dist. 32 prob GT 0.7526 0.4320 0.8069 0.8659 1.3569
SMART top-5, sampled w/ policy prob. neg. dist. 5 prob RO 0.7589 0.4510 0.8085 0.8709 1.3135
SMART top-32, sampled w/ policy prob. neg. dist. 32 prob RO 0.7580 0.4533 0.8093 0.8661 1.3325

Table 5. Ablation study on WOSAC 2% validation split. We compare different ways to fine-tune the same base mode (BC pre-training).
”Sampled from” indicates how the action is sampled during fine-tuning, either based on the distance to the GT (“neg. dist”, “uniform”,
“closest”) or based on the model outputs (“prob”, “max-prob”). Here dist. is the abbreviation of distance. RO stands for rollout, i.e., the
next target action is computed based on the rollout, not the GT state. RMM stands for the realism meta metric of WOSAC.

RMM shows slight improvement, while the collision and
off-road rates are marginally worse. Next, we explore the
use of top-K sampling for fine-tuning the BC policy. As
expected, top-K sampling alone does not work. However,
when combined with distance-based filtering or sampling,
top-K sampling can significantly enhance the BC policy’s
performance, achieving results comparable to those of our
CAT-K fine-tuning approach. This justifies the effective-
ness of this approach when the expert demonstrations are
generally well-behaved and less diverse, which is consis-
tent with prior work that applies this sampling strategy for
fine-tuning to only vehicles [19], often within the context
of highway scenarios [37]. Compared to top-K sampling
with distance-based filtering or sampling, our method sig-
nificantly outperforms in off-road rate and minADE, while
other metrics remain on par. Overall, fine-tuning with CAT-

K rollout achieves the best performance, with peak perfor-
mance at K = 2 or K = 3, which aligns with the fact
that the ego vehicle’s behavior is less multimodal. For traf-
fic simulations where demonstrations are highly multimodal
and involve various traffic participants (vehicles, pedestri-
ans, and cyclists) whose behaviors do not necessarily obey
traffic rules, the advantage of our CAT-K rollout becomes
more significant.

Method (Local val. split) Collision rate ↔ Off-road rate ↔ RMM ↓ ADE ↔ minADE32 ↔
BC pre-training 0.0568 0.0053 0.8108 1.3623 1.3537

BC fine-tuning w/ hard-assignment (training diverged) 0.1574 0.0637 0.7409 5.3507 5.3447

Trajeglish noisy tokenization (K = 3, neg. dist., GT) 0.0611 0.0057 0.8117 1.3563 1.3575
SMART trajectory perturbation (K = 3, uniform, RO) 0.0590 0.0057 0.8118 1.3713 1.3771

Top-3 0.0415 0.0140 0.8072 1.2004 0.8249
Top-3 + distance filter 0.0409 0.0076 0.8128 1.1639 0.8577
Top-3 + distance based sampling 0.0410 0.0070 0.8163 1.3245 0.7610

CAT-1 (Deterministic rollout) 0.0433 0.0138 0.8081 1.1799 0.7962
CAT-2 0.0437 0.0038 0.8147 1.5117 0.6323
CAT-3 0.0422 0.0035 0.8169 1.3096 0.6912
CAT-4 0.0500 0.0035 0.8137 1.5699 1.4840
CAT-8 0.0771 0.0045 0.8050 1.6775 1.6704

Table 6. Performance of ego policies on WOSAC with local evaluation on 2% validation split. All models are fine-tuned for 5 epochs
based on the BC pre-training model, which is trained for 32 epochs. We use deterministic rollout during inference and compute all metrics,
except for the minADE32. For minADE32, we generate 32 rollouts by using top-3 sampling with a temperature of 1.0 to first sample the
categorical distribution over the mixtures, then selecting the mean of the sampled Gaussian mixture. RMM stands for the realism meta
metric of WOSAC.

