
CoMatcher: Multi-View Collaborative Feature Matching

Supplementary Material

In this supplementary material, we provide the following
elements:
• Details of the groupwise matching pipeline.
• Implements of image grouping.
• Additional experiments results on Structure from Motion.
• Method details.
• Experimental details.
• More qualitative results in complex scenes.

A. Details of groupwise matching framework

The proposed approach follows a sequential processing
pipeline (Fig. 1). Given an uncontrolled image set I = {Ii |
i = 1, . . . , NI} capturing a scene, our method outputs a set
of tracks {Tk | k = 1, . . . , NX} corresponding the NX 3D
points.

To this end, We first extract local features Fi =
{(pIi

k ,dIi
k ) | k = 1, . . . , NF } for each image Ii [3, 7,

17]. After that, we pre-compute a overlap matrix O ∈
[0, 1]NI×NI by retrieval techniques [1, 9, 14]. The output
of this stage is a overlap graph, where the nodes represent
images and the edges indicate the presence or absence of
overlap relationships between image pairs. The weight of
each edge quantifies the degree of co-visibility.

To effectively leverage the complementary information
provided by multi-view, we then group images, i.e., finding
subsets of correlated images with overlapping content from
the unordered set. Formally, this can be treated as a clus-
tering problem: I = {G1, . . . ,GNG}. After that, to lever-
age the constraints inherent in the multi-view feature space,
we explicitly compute the matches within each group.
The matching is performed using any two-view matching
method [6, 11] and refined by removing outliers through
geometric verification [4]. We assume that these verified
matches are highly reliable and use them serve as priors to
guide the subsequent matching process.

Next, we focuses on calculating the matches for all
remaining co-visible image pairs. Our computation fol-
lows a groupwise paradigm, as shown in Fig. 1. Taking a
specific group Gs as an example, there exist numerous im-
ages within the entire image set I that share co-visibility
with Gs. Subsequently, we iteratively select a target view
from this subset and perform many-to-one matching using
the CoMatcher network, acquire all the matching results for
Gs. The same computation is then repeated for each group,
ultimately yielding the complete set of correspondences for
all co-visible image pairs.

Finally, robust estimation techniques [2, 4] are employed
to validate all matching results on a pairwise basis. These

Algorithm 1: Images Grouping Algorithm
Input: V : Node set, O: Edge weights, θmin, θmax:

Thresholds, Nmax
G : Max group size

Output: Groups {G1,G2, . . . }
1 Degree: d(v) = |{u ∈ V | Ov,u exists}|
2 Mark all v ∈ V as unassigned;
3 while exists unassigned v ∈ V do
4 G ← ∅; i← argmaxv∈V d(v);
5 G ← G ∪ {i}; Mark i as assigned; N ← 1;
6 while N < Nmax

G do
7 foreach unassigned v ∈ V with Ov,u defined for

some u ∈ G do
8 score(v)←

∑
u∈G,Ov,u exists Ov,u

d(v)
;

9 C ← {v ∈ V | θmin < score(v) <
θmax, v unassigned};

10 if C = ∅ then
11 break

12 j ← argmaxv∈Cscore(v);
13 G ← G ∪ {j}; Mark j as assigned; N ← N + 1;

14 return {G1,G2, . . . };

verified two-view correspondences are linked into tracks
through multi-view consistency.

Compared to classical frameworks such as Colmap [12],
the core distinction of our approach lies in the grouping and
matching stages, while the remaining steps retain the origi-
nal implementations.

B. Images grouping algorithm
We impose a maximum size Nmax

G of each group, based on
the performance constraints of the device.

Each group is expected to satisfy two key criteria: (1)
mutual visibility between each pairs and (2) a reasonable
degree of overlap. Excessive overlap adds limited value, as
it often stems from images captured from nearly identical
viewpoints. To address these, we propose a search algo-
rithm designed to identify correlated subsets which utilizes
the connectivity of each node (the number of co-visible im-
ages) and the weight of edges (the degree of overlap).

As shown in Alg. 1, We iteratively search to construct
image groups. Specifically, to form a new group, we first se-
lect the image with the highest connectivity among the un-
grouped images—namely, the image with the largest num-
ber of overlapping views—as the initial image for the cur-
rent group. Subsequently, for all images overlapping with
the initial image, we calculate co-visibility scores based on
the weights of their edges and filter potential candidates us-



Figure 1. Groupwise matching pipeline

ing a predefined threshold. The candidate with the highest
score is then added to the group. This process is repeated
iteratively until no suitable candidates remain or the group
reaches its maximum allowable size.

C. Additional results
We additionally evaluate our method for Structure from
Motion (SfM) on the MegaDepth [5] and ETH-Colmap
benchmarks [13]. Unlike previous evaluations, this sec-
tion primarily focuses on two key metrics: the number of
landmarks (NL) and the track length (TL), which represents
the average number of observations per landmark. Using
SuperPoint [3] to extract local features, we compared our
method with two-view matching approach: NN+mutual and
LightGlue [6].

We selected a test scenes from the MegaDepth dataset
and two smaller scenes from ETH-COLMAP bench-
mark [13] for reconstruction. In each scene, we sam-
pled 50 images from sparse viewpoints and extracted
2048 keypoints from each image. The matches obtained
from different matching methods were reconstructed using
COLMAP [12], with the default settings maintained.

We acquire a greater number of landmarks and longer
tracks compared to the two-view matching method (See
Tab. 1). This improvement is attributed to the ability
of CoMatcher to leverage multi-view features and multi-
view consistency to infer globally optimal correspondences,
which are often more reliable.

D. Method details
D.1. Architecture
GNN unit: Given the point feature f Iiu and a message point
setW , each GNN unit learns to integrate the message vector

Scene Method NL TL

Sacre Coeur
SuperPoint+NN 18.1k 6.57
SuperPoint+LightGlue 18.7k 6.92
SuperPoint+CoMatcher 19.3k 7.21

Fountain
SuperPoint+NN 11.9k 4.62
SuperPoint+LightGlue 12.6k 5.08
SuperPoint+CoMatcher 13.1k 5.31

Herzjesu
SuperPoint+NN 10.4k 3.82
SuperPoint+LightGlue 11.7k 4.12
SuperPoint+CoMatcher 12.4k 4.37

Table 1. Structure from Motion on MegaDepth and ETH-
COLMAP. We report the number of landmarks (NL) and the track
length (TL) of reconstruction.

fromW with f Iiu to update [6, 11, 15]:

f Iiu ← f Iiu +MLP
([
f Iiu |mIi←W

u

])
. (1)

Here, [· | ·] denotes the concatenation and MLP represents
a multi-layer perception. The message vector mIi←W

u is
computed through an attention mechanism [18], represent-
ing a form of feature interaction between point u and all
points inW .

The update MLP consists of a single hidden layer with a
dimension of dh = 2d, followed by a LayerNorm operation,
a GeLU activation, and a linear projection from (2d, d) with
a bias term.

Self-attention: CoMatcher first performs self-attention
at each layer, where each point attends to all points within
the same image. For each point u in Ii, the attention score is



computed using a relative positional encoding scheme con-
sistent with LightGlue [6]:

aIiIiuv =
(
qIi
u

)⊤
R

(
∆pIi

uv

)
kIi
v . (2)

where R (·) is a rotary encoding of the relative position be-
tween the points.

Two-view cross-attention: For each source-target view
pair, each point in Ii attends to all points in It, and vice
versa [11]. This results in a mutual computation performed
twice. Taking a point u in Ii as an example query, the atten-
tion scores are computed as:

aIiItux =
(
qIi
u

)⊤
kIt
x , (3)

where qIi
u and kIt

x represent the linearly transformed feature
embeddings of the corresponding point features.

In the two-view cross-attention module where the source
view serves as the query, we embed the multi-view feature
correlation strategy.

Implementation of rotary encoding: Following [6], we
devide the space into d/2 subspaces, each of which is ro-
tated by an angle determined:

R(p) =


R̂

(
b⊤1 p

)
0

. . .

0 R̂
(
b⊤d/2p

)
 , (4)

where

R̂(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. (5)

bk ∈ R2 is a learned basis.

D.2. Loss
Correspondence loss: For each pair Ii and It, we perform
two-view transformations using relative poses or homogra-
phy to compute matches ground truth labels Ci,t, following
prior works [6, 11, 15]. If no other points are reprojected
nearby, we label keypoints C∅i,t ⊆ Wi or C∅t,i ⊆ Wt as non-
matching, whereWi andWt represent the indices of feature
points in Ii and It, respectively. We minimize the negative
log-likelihood of the assignment matrix:

Lcorr(Ii, It) =−
1

|Ci,t|
∑

(u,x)∈Ci,t

logP(u, x)

− 1

2|C∅i,t|

∑
u∈C∅

i,t

log
(
1− σIi

u

)

− 1

2|C∅t,i|

∑
x∈C∅

t,i

log
(
1− σIt

x

)
. (6)

This loss function is designed to balance positive and
negative samples.

Ground-truth label of confidence loss: The confidence
of each point in source views is quantified as the consis-
tency probability between its correspondence estimated at
the current layer and the final estimation. The ground truth
label indicates whether these two estimations are consis-
tent, and the final estimation corresponds to the results pro-
duced by the matching head after threshold-based filtering.
To compute matching results at intermediate layers, we di-
rectly apply dual-softmax to the intermediate features, fol-
lowed by mutual nearest neighbor matching and threshold
filtering. This lightweight computation effectively super-
vises the learning of the confidence estimator while main-
taining computational efficiency.

D.3. Grouping and Intra-group matching
As discussed in Sec. 4.6, the size of the group has a sig-
nificant impact on the matching results. Additionally, since
the local features of an entire group are processed during a
single forward pass, memory consumption becomes a crit-
ical consideration. In our primary experiments, we set the
maximum group size to 4. The co-visibility thresholds for
group formation are denoted as θmin = 0.3 and θmax= 0.7.

The choice of intra-group matching method is flexible;
by default, we adopt LightGlue [6].

E. Experimental details
E.1. Training details
Pre-training on synthetic homography datasets: Follow-
ing [6, 11], we first pre-train CoMatcher on synthetic ho-
mographies of real-images. We use 150k images from the
Oxford-Paris 1M distractors dataset [8] for training.

To train CoMatcher, each image is subjected to four dif-
ferent homography transformations, generating quadruplets
consisting of three source views and one target view. We
generate largely skewed homographies by randomly sam-
pling four image corners within each quarter of the im-
age, ensuring a convex enclosed area to avoid degenera-
cies. Random rotations and translations are applied while
keeping the corners within the image boundaries, creating
extreme perspective changes without border artifacts. Ad-
ditionally, we apply a series of photometric augmentations
to each image.

The extracted images are resized to 640×480 during in-
terpolation. Correspondences with 3px symmetric repro-
jection error are deemed inliers, and points without any cor-
respondence under this threshold are outliers. We extract
512 keypoints for SuperPoint [3] and 1024 keypoints for
DISK [17].

Finetuning on MegaDepth: The model is fine-tuned
of MegaDepth [5] with pseudo ground-truth camera poses
and depth images. We sample 200 co-visible multi-view
quadruplets per scene and randomly select one image as the



Figure 2. Qualitative results of CoMatcher under challenging case. In each quadruplet, the image in the top-left corner (highlighted
with a red box) represents the target view.



target view for training. The sampling process is guided by
the covisibility score of image pairs. We design the sam-
pling strategy to ensure that the final training images are
evenly distributed across the score intervals [0.1, 0.3], [0.3,
0.5], and [0.5, 0.9].

Images are resized such that their larger edge is 1024,
and they are zero-padded to a resolution of 1024 × 1024.
Correspondences with a reprojection error ≤ 3 pixels and
mutual nearest neighbors are labeled as inliers, while those
with a reprojection error > 5 pixels are labeled as outliers.
Points without depth or without a correspondence having a
Sampson Error ≤ 3 pixels are also marked as outliers. We
extract 2048 keypoints per image.

E.2. Evaluation details

Homography estimation: HPatches is well-suited for eval-
uating our many-to-one matching approach. For each scene,
it provides the ground truth homographies for a target view
I0 and source views {I1, . . . , I5}. We use a single forward
pass of CoMatcher to obtain the matches of these five pairs.
End2End [10] computes all pairwise correspondences in
one pass for an small image set, we extract the five required
pairs for evaluation. For two-view matching methods, we
perform five forward passes to compute target matches in a
pairwise manner.

We assess the accuracy of the estimated homography us-
ing the mean absolute corner distance from the ground-truth
homography. Following [6, 15], we resize images to a max-
imum edge length of 480. For each method, we fine-tune in-
lier threshold of RANSAC [4] and report the highest scores.

Relative pose estimation: From MegaDepth, we sam-
pled 750 co-visible quadruplets per scene, and the diffi-
culty is balanced based on visual overlap, following prior
work [6, 15, 19]. A target view is sampled in each quadru-
plets, resulting in a total of 4500 image pairs. We match the
sampled target view with the remaining images.

For each quadruplet, We use a single forward pass for
CoMatcher and End2End [10], and perform three forward
passes for two-view matching methods. We extract 2048
local features per images, each resized such that its larger
dimension is 1600 pixels. For dense methods [15, 16], we
retain the original settings from their respective papers for
evaluation.

F. More qualitative results

We report additional qualitative results of CoMatcher under
challenging case, as shown in Fig. 2.

CoMatcher effectively leverages multi-view connection
to reason about spatial knowledge, such as occlusions, in
complex scenes. This capability allows it to estimate reli-
able correspondences even in cases with partial visibility.
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[2] Ondřej Chum, Jiřı́ Matas, and Josef Kittler. Locally opti-
mized RANSAC. In Pattern Recognition, pages 236–243.
Springer, 2003. 1

[3] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. SuperPoint: Self-supervised interest point detec-
tion and description. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 224–236, 2018. 1, 2, 3

[4] Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. In Communica-
tions of the ACM, 24(6):381–395, 1981. 1, 5

[5] Zhengqi Li and Noah Snavely. MegaDepth: Learning single-
view depth prediction from internet photos. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 2041–2050, 2018. 2, 3

[6] Philipp Lindenberger, Paul-Edouard Sarlin, and Marc Polle-
feys. LightGlue: Local feature matching at light speed. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 17627–17638, 2023. 1, 2, 3, 5

[7] David G Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vi-
sion, 60:91–110, 2004. 1
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