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1. Dataset and implementation details

1.1. Datasets

Vimeo90k Vimeo90k [21] is a commonly used dataset for

video frame interpolation, video super-resolution, and spa-

tiotemporal video super-resolution. It contains 64,612 train-

ing clips and 7,824 testing clips, with each clip consisting

of 7 consecutive frames at a spatial resolution of 448 × 256.

We use Vimeo90K as the training and testing set for fixed

temporal and fixed resolution resampling tasks, specifically

including Time 2× Space 1×, Time 2× Space 4×, and Time

2× Space 1×. Additionally, to investigate whether different

motion magnitudes affect the quality of downsampling re-

sults (motion steganography), we follow [17] and split the

Vimeo90k test set into fast motion, medium motion, and

slow motion subsets, containing 1,225, 4,977, and 1,613

video clips, respectively. We also remove several video

clips from the test set that contain consecutive all-black

frames, as they can lead to infinite PSNR values.

Vid4 Vid4 [8] is a classic dataset for evaluating video super-

resolution methods. It contains 4 video clips (calendar, city,

foliage, and walk), each with at least 34 frames (720 × 480).

We follow the experimental settings of [16] and use the 4 se-

quences in the Vid4 dataset to compare different resampling

models.

Adobe240FPS The Adobe240FPS [9] dataset contains 133

720P hand-held videos captured at 240 FPS. Of these, 100

sequences are used for training, and 17 sequences are used

to test non-integer frame rate conversion. We use this

dataset, captured under high-frame-rate conditions, as the

training set for the continuous spatiotemporal resampling

model. Specific details of the dataset preparation are pro-

vided in the following sections.

SPMCS SPMCS [13] includes 32 videos and is widely used

as a benchmark for video super-resolution. It contains rich

textures and is sensitive to different scaling factors. We use

it to evaluate the performance of continuous spatiotemporal

resampling.

1.2. Training and testing details

Details for Fixed Spatialtemporal Resampling. As men-

tioned in the main text, the training process consists of two

stages. In the first stage, we train the resampling model us-

ing Charbonnier loss in an end-to-end manner, supervising

only the output of the upsampler. The loss function is for-

mulated as:

lossrec =
1

T

T∑

i=1

Lchar(I
GT
i , ISR

i ), (1)

where IGT
i and ISR

i represent the ground truth and the re-

constructed frames from the upsampler, respectively. In

general, the downsampling results directly output by the

model are in floating-point format, while in practical appli-

cations, images are typically quantized to unsigned 8-bit in-

tegers. Since the quantization process is non-differentiable

during backpropagation, we adopt the differentiable quanti-

zation layer from STAA [16] to enable quantization-aware

training. In the second training stage, which aims to em-

bed motion information into low-frame-rate videos, we use

the odd frames (e.g., 1st, 3rd, 5th, 7th) as ground truth to

supervise the output of the IMSM. If spatial downsampling

is involved, we use the bicubically downsampled results as

low-resolution (LR) guidance. During training, we apply

standard augmentation techniques, such as rotation, flip-

ping, and random cropping. The training patch size is set to

192×192, and we train the network for 280,000 iterations

using the Adam optimizer. The learning rate is initialized

at 2 × 10−4 and decayed to 1 × 10−7 using cosine anneal-

ing. In the ablation study, to evaluate the effectiveness of

the Invertible Motion Steganography Module (IMSM), we

simultaneously supervised the output of both the downsam-

pler and the upsampler. The total loss function is formulated

as:

losstotal =
1

T

T∑

i=1

Lchar(HRi, SRi)+

1

T ′

T ′∑

k=1

Lchar(LR
Bic
k , LRk),

(2)

where SRi and LRk denote the ith super-resolved frame

and the kth downsampled frame, respectively. LRBic
k rep-

resents the kth bicubically downsampled LR guidance.

Details for Continuous Spatiotemporal Resampling. To

achieve controllable spatiotemporal resampling, we con-

struct various combinations of resampling factors during

training for spatiotemporal generalization using the high-

frame-rate dataset [9]. Specifically, we perform temporal

resampling with factors of (5/6, 4/5, 3/4, 2/3, 1/2), and spa-

tial resampling from 2.0 to 4.0 with a step size of 0.2 (i.e.,

2.0, 2.2, ..., 4.0). To facilitate understanding, we provide

two sets of examples in Figure 1.
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Figure 1. To construct a training set for non-integer frame rate conversion, we sample high-frame-rate videos at different intervals and align

the timestamps to create training pairs. The red and blue boxes correspond to the cases of 3/4 and 4/5 frame rate conversions, respectively.

Table 1. Quantitative comparison with state-of-the-art methods for space 4 × resampling on benchmark datasets, metrics:

PSNR(dB)/SSIM. The best and the second-best results are in red and blue, respectively.

Method type Methods
Vimeo90k

RGB-Space Y-Space

Vid4

RGB-Space Y-Space
Params

Image resampling

CAR [12] + EDSR [7] 35.64/0.9331 37.73/0.9484 26.77/0.8221 28.32/0.8423 52.9 M

IRN[18] 37.68/0.9586 40.68/0.9731 29.18/0.8986 31.24/0.9184 4.4 M

AIDN[19] 38.06/0.9591 40.93/0.9725 28.70/0.8880 30.66/0.9071 3.8 M

HCFlow [6] 38.08/0.9618 41.17/0.9755 29.59/0.9065 31.71/0.9257 4.4 M

Video resampling

SelfC-small [14] - 40.68/0.9756 - 31.61/0.9317 1.8 M

SelfC-large [14] 38.50/0.9660 41.46/0.9784 30.31/0.9249 32.32/0.9404 3.3 M

LSTM-VRN [2] - 41.42/0.9764 - 32.24/0.9369 9.0 M

MIMO-VRN [2] - 43.26/0.9846 - 33.79/0.9577 19.2 M

MIMO-VRN-C [2] - 42.53/0.9820 - 33.40/0.9537 19.2 M

Ours 40.02/0.9738 43.23/0.9858 32.33/ 0.9496 34.51/0.9628 17.4 M

2. Comparison for Spatial Video Resampling

Since the proposed method demonstrates significant advan-

tages in temporal resampling, a natural question arises: does

the motion steganography module also work effectively for

spatial resampling alone? To verify this, we adopt a simi-

lar training strategy to spatiotemporal resampling, but with

downsampling performed only in the spatial dimension by

a factor of 4. Our comparison methods include image re-

sampling techniques [6, 12, 18, 19] and video resampling

methods [2, 14]. The comparison results are presented

in Table 1. Despite not incorporating specific designs for

spatial sampling (e.g., feature propagation or frame align-

ment), our method remains highly competitive, outperform-

ing the comparison methods on the majority of metrics in

both Vimeo90k and Vid4. Aligned with the experimental

results in the main text, we also present ablation experi-

ments for IMSM and different model complexities in Ta-

ble 2 and Table 3. The results show that IMSM remains ef-

fective in cases where only spatial resampling is performed.

This effectiveness can be attributed to the fact that we did

not impose direct constraints on the downsampling results.

In other words, we did not explicitly require the downsam-

pling results to closely resemble any particular traditional

sampling model (e.g., bicubic). This looser constraint actu-

ally benefits the upsampling recovery process. From an-

other perspective, compared to the increasingly complex

frame alignment module designs in video super-resolution

tasks [20, 22], it may be more effective for video resam-

pling to conduct end-to-end optimization of the entire joint

downsampling-upsampling process. We hope these findings

can inspire researchers to design more effective spatial re-

sampling algorithms.

3. More Evaluations of the Downsampling Re-
sults

For resampling tasks, evaluating the quality of downsam-

pling results is crucial. This distinguishes the task from

video compression, as we expect the downsampled results

to maintain a comparable visual quality to traditional down-

sampling methods. However, existing spatiotemporal re-



Figure 2. Interface for subjective visual experiments, where participants are asked to compare the visual quality of the two images on the

left and right. They can select the one they find more visually appealing or choose ”no preference”.

Figure 3. A subjective visual preference comparison between im-

ages containing embedded motion information and those gener-

ated by traditional downsampling methods. Most users cannot per-

ceive any noticeable difference between the two.

Table 2. Ablation study of w/wo Invertible Motion Steganography

Module(IMSM) on benchmark dataset for spatial 4× resampling,

Metrics: PSNR-Y(dB)/SSIM-Y

Upscale

rate

Vimeo90k Vid4

w/o IMSM w/ IMSM w/o IMSM w/ IMSM

T×1 S×4 41.83/0.9798 43.23/0.9858 32.92/0.9472 34.51/0.9628

sampling methods STAA [16] only impose constraints on

the numerical range of downsampling results, lacking both

qualitative and quantitative assessments. Therefore, we

conduct a comprehensive evaluation of the downsampling

results, including full-reference metrics, no-reference met-

rics, and subjective experiments. Consistent with the main

text, the objective metrics for 4× spatial resampling are pre-

sented in Table 4 and Table 5. From the objective evalua-

Table 3. Ablation experiments on model performance under dif-

ferent complexities for spatial 4 × resampling, metrics: PSNR-

Y(dB)/SSIM-Y.

Downsampling

Rate
block num

Vimeo90k Vid4

PSNR-Y SSIM-Y PSNR-Y SSIM-Y

T×1 S×4

12 41.99/0.9825 33.53/0.9550

18 42.25/0.9834 33.83/0.9580

24 43.23/0.9858 34.51/0.9682

Table 4. Full reference quantitative Comparison of downsampled

image and its corresponding counterpart with traditional down-

sampling method (metrics: PSNR-Y/SSIM-Y). We apply bicubic

sampling for spatial 4× downsample.

Downsampling

Rate
Vimeo-Fast Vimeo-Medium Vimeo-Slow Vimeo-Total

T×1 S×4 47.42/0.9970 46.15/0.9965 44.63/0.9953 46.04/0.9963

Table 5. No reference quantitative Comparison of downsampled

image and its corresponding counterpart with traditional down-

sampling method (metrics: NIQE ↓).) We apply bicubic sampling

for spatial 4× downsample.

Downsampling

Rate

Vimeo-Fast Vimeo-Medium Vimeo-Slow Vimeo-Total

Bicubic Ours Bicubic Ours Bicubic Ours Bicubic Ours

T×1 S×4 12.05 11.64 14.30 12.86 6.48 6.34 12.33 11.32

tion metrics, all downsampling results across various mo-

tion magnitudes and spatiotemporal combinations demon-

strate high PSNR and SSIM values. And the results pro-

duced by our downsampling method also demonstrate su-

perior NIQE scores. In addition to objective evaluation

metrics, we conduct subjective experiments to verify that

the hidden motion information does not affect subjective

visual perception. We randomly select 100 pairs of im-



ages from Vimeo90K for evaluation and invite 24 partici-

pants to take part in the experiment. The evaluation inter-

face is shown in Figure 2, where traditional spatiotemporal

downsampled images are displayed alongside the proposed

model’s downsampled images containing hidden motion in-

formation—randomly shuffled. Participants are asked to

choose which image look better based on ”clarity,” ”color

saturation,” and ”overall visual quality.” The options include

”left image,” ”right image,” and ”no preference.” The re-

sults, summarized in Figure 3, indicate that in the vast ma-

jority of cases, participants could not perceive any signif-

icant differences between the two images and choose ”no

preference.” In other cases, participants could not clearly

distinguish which downsampling result is better. To sta-

tistically analyze the participants’ choices, we employ the

Chi-Squared Test. The null hypothesis (H0) for the Chi-

Squared Test states that participants’ preferences for images

A and B are independent, indicating no significant differ-

ence. The alternative hypothesis (H1) posits that there is

a significant difference in the participants’ preferences for

images A and B. The results of the Chi-Squared Test show

that the Chi-Squared statistic is 0.178, while the p-value is

0.672. Based on a significance level of 0.05, we fail to reject

the null hypothesis since the p-value exceeds this threshold.

This implies that there is no significant difference in partic-

ipants’ choices between images A and B, indicating that the

subjective visual difference between A and B is very small,

making it nearly impossible to distinguish which image is

visually better.

4. Frequency Analysis for Motion Steganogra-
phy

In addition to comparing low-bit residuals, frequency anal-

ysis is a common method in image steganalysis. We use the

Discrete Cosine Transform (DCT) to analyze images in the

frequency domain. Specifically, we perform DCT transfor-

mations on the host image I0 (original image) and the stego

image Î0 (image with hidden motion), dividing the results

into eight frequency bands, from low to high frequency.

The results are shown in Figure 4. We present two scenar-

ios: in subfigure (a), there is noticeable movement between

I0 and I1, while in subfigure (b), the movement is mini-

mal. Frequency analysis reveals that differences between

the host and stego images are larger in lower frequency

bands (band 1, band 2) and minimal in higher bands (band

7, band 8), where the red and blue curves almost overlap.

Comparing subfigure (a) and subfigure (b), we observe that

images with greater movement exhibit larger differences

in their DCT coefficients, indicating that complex motion

significantly alters the frequency distribution. DCT-based

image steganography typically hides information in mid to

low-frequency bands, as modifying coefficients in these ar-

eas helps maintain hidden information stability. These fre-

Table 6. Comparison of the performance of the proposed method

and FFmpeg in performing non-integer frame rate conversion on

the Adobe dataset, metrics: PSNR-Y (dB)/SSIM-Y)

20FPS → 24 FPS 24 FPS → 30 FPS

FFmpeg 27.53/0.7756 28.88/0.8067

Ours 38.31/0.9501 40.15/0.9626

quency coefficients are less likely to be reduced during com-

pression (such as quantization) compared to high-frequency

coefficients. Additionally, slight changes to low-frequency

coefficients generally go unnoticed, as they do not signif-

icantly alter the image’s overall appearance. In contrast,

changes to high-frequency coefficients may introduce no-

ticeable noise or distortion, making them easier to detect.

5. Applications

Non-integer Frame Rate Upsampling. Given that many

video interpolation algorithms can achieve integer frame

rate conversions, this study focuses on non-integer frame

rate conversions. To the best of our knowledge, no learning-

based methods currently support multiple non-integer frame

rate conversions using a single model. In practice, non-

integer frame rate conversion often relies on tools such as

FFmpeg, which typically employ techniques like linear in-

terpolation, frame repetition, and timestamp adjustments to

modify the frame rate. To validate the superiority of the

learnable approach over traditional methods, we adopt a

strategy similar to that illustrated in Figure 1, generating

pairs of non-integer low-to-high frame rate data from high

frame rate sources in the Adobe dataset to serve as both in-

puts and outputs for the upsampling module. We train an

upsampler and test it on the Adobe test set, evaluating two

configurations: (1) 20 FPS to 24 FPS, and (2) 24 FPS to

30 FPS. The experimental results, presented in Table 6, in-

dicate that the proposed method significantly outperforms

FFmpeg. Moreover, in certain cases, FFmpeg resorts to

frame repetition to adjust the source video to the target

frame rate, which can lead to noticeable stuttering during

continuous playback. In contrast, our method avoids this is-

sue, providing a smoother playback experience.

Efficient Video Resampling with Compression. Unlike

the results of image downsampling, which are often saved

in lossless PNG format, video downsampling typically un-

dergoes lossy compression before being transmitted as a bit-

stream, primarily to reduce bandwidth from a practical ap-

plication perspective. To verify the compatibility of the pro-

posed method with existing compression frameworks, we

replace the simple quantization operation following down-

sampling with a real H.265 codec [10]. The compression

is performed using the default settings of FFmpeg x265 for

all commands. Given that the x265 compression process
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Figure 4. Analysis of the DCT coefficient histograms of different frequency bands after performing DCT transformation on the stego image

and the corresponding host image. Two sets of images are provided, where (a) shows significant motion between adjacent frames, while

(b) exhibits relatively little motion.

Table 7. BDBR (%) Results with the anchor of AIDN calculated

by MS-SSIM.

Method SelfC x265 Ours

Rate saving -12.50 -23.75 -33.54

is non-differentiable, during backpropagation, we directly

pass the gradient from before the compression codec to the

upsampler. Following previous work [14], we train a space

2× time 1× model and compare the experimental results

with those obtained using the x265 encoder and two other

learnable resampling methods [14, 19]. The results from

x265 represent direct compression of the video with its orig-

inal resolutions. From the rate-distortion curves in Figure 5

and the BDBR values in Table 7, it can be observed that, at

similar bits per pixel (bpp), our results achieve better MS-

SSIM performance. This also demonstrates that our motion

steganography-based resampling scheme is robust to com-

pression, which aligns with the conclusions drawn from the

visualization results in Figure 4. Specifically, steganogra-

phy primarily affects the low-frequency components of the

DCT, which are not easily impacted by compression.

Figure 5. The rate-distortion performance of our approach com-

pared with H.265 (x265 default) and the recent learned im-

age/video resampling approaches on Vid4.



6. Differences from Existing Work
Due to constraints on the length of the main text, we

will further discuss the differences between the proposed

method and some existing works here.

Differences from MV-based Video Steganography.
Motion vector (MV) based video steganography [3, 4] is

an important approach within video steganography that

has garnered increasing attention from researchers. This is

because MV-based steganography offers a large embedding

capacity due to the significant amount of motion vectors

present in compressed video. However, our approach

fundamentally differs from these MV-based methods. From

a motivational perspective, the goal of MV-based video

steganography is to maximize the capacity for hiding infor-

mation within motion vectors and to enhance the reliability

of information recovery. In contrast, our method aims to

achieve high-fidelity temporal resampling of videos. From

a task-oriented viewpoint, MV-based video steganogra-

phy seeks to embed information within motion vectors,

treating them as the host for hidden information. In our

method, we embed motion information into low-frame-rate

downsampled videos, where the motion information itself

serves as the object to be concealed. In terms of specific

implementation, MV-based methods often rely on complex,

manually designed steps, such as selecting candidate MV

sets and calculating embedding costs. These operations are

deeply coupled with the overall video encoding process,

requiring strict adherence to encoding standards [1, 11, 15].

In contrast, our method does not explicitly define motion

vectors or optical flow but instead designs an end-to-end

learnable model that implicitly implements the stegano-

graphic process.

Differences from FGRN. FGRN [5] introduces an addi-

tional neural network to transform features into visually

pleasing images during downsampling and reverses the

process during upsampling. Although FGRN is similar in

form to our approach, it differs significantly in terms of

tasks addressed, motivations, model design, and optimiza-

tion objectives. From a task perspective, FGRN focuses

on the resampling of a single image, considering only the

spatial correlation of downsampling results, whereas our

method targets the spatiotemporal resampling of videos,

with a primary focus on temporal resampling. In terms

of motivation, FGRN aims to optimize the end-to-end

resampling process of a single image to reduce direct

constraints on the downsampling results. In contrast,

our method’s main objective is to imperceptibly embed

high-frame-rate motion information into low-frame-rate

videos to aid in high-frame-rate reconstruction. Regarding

implementation, FGRN achieves only preset scaling for

a single image, while our method enables the resampling

of multiple frames at arbitrary frame rates, including

optimizations tailored for video compression.

7. Limitations and Future Work
Although the proposed solution achieves excellent perfor-

mance and high flexibility, there are still some limitations.

First, similar to many existing video resampling methods,

our approach has high complexity. Despite our efforts to

adopt a lightweight design, such as using spatial-temporal

separable 3D convolutions to form the Dense 3D Block, the

inference complexity remains high and consumes a signifi-

cant amount of GPU memory, making deployment on some

resource-constrained edge devices challenging. Addition-

ally, the capability of motion steganography for spatial up-

sampling has not been fully explored. We believe that fur-

ther investigation into the relationship between motion es-

timation, motion compensation, and motion steganography

could yield even higher performance.

8. More Visual Comparisions
Figure 6 provides additional visual results of low-bit ste-

ganalysis. In Figures 7, 8, 9 and 10, we present more visual

comparisons of various methods under different spatiotem-

poral resampling combinations. Our method demonstrates

considerable advantages across all spatiotemporal combi-

nations, particularly in handling large motions and various

nonlinear movements.
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Figure 6. More visualizations of Low-Bit steganographic motion information.
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Figure 7. Visual qualitative comparisons on reconstruction of Space 4 × time 1 × case on Vid4 dataset.
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Figure 8. Visual qualitative comparisons on reconstruction of Space 4 × time 2 × case on Vimeo90k dataset.
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Figure 9. Visual qualitative comparisons on reconstruction of Space 1 × time 2 × case on Vimeo90k dataset.
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Figure 10. Visual qualitative comparisons of varying resampling fatcors for each method on the SPMCS dataset.
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