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1. Experimental Investigation of Semantic
Representation Tendencies of Dimensions

Here, we describe the details of experiments to investi-
gate the relationship between local dimensions and the
specific semantics in the representation space, using our
trained state-of-the-art model DH-Set under the Faster R-
CNN+BERT backbone.

First of all, let us recall the general definition of se-
mantic similarity of cross-modal features. For arbitrary
textual feature u = {ai}di=1 ∈ R1×d and visual feature
v = {bi}di=1 ∈ R1×d, where ai and bi are the i-th local di-
mension in the d-dimensional space, existing methods typ-
ically aggregate all dimensional correspondence to reflect
their semantic similarity, i.e.,

∑d
i=1 si, where si can be de-

termined by the product of scalars ai and bi in the inner
product operation.

Thus, for a textual-visual pair with aligned semantics, its
semantic similarity is determined by the sum of all cross-
modal dimensional correspondence si, where the larger si
is, the greater the contribution of the i-th dimension to this
semantic. That is, the i-th local dimension in the represen-
tation space is more inclined to describe this semantic.

Based on the above analysis, we take all word-region
pairs with the same semantics, e.g., ‘man’ (a total of 30,275
pairs), on the Flickr30K training dataset. we first obtain all
the cross-modal semantic correspondence vectors, and col-
lect the dimension index sets of the largest top-100 {si} in
each vector, i.e., the dimensions most significantly reflect
the semantics of ‘man’. Then, we count the co-occurrence
probabilities of each dimension and sort the probabilities of
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Figure 1. Visualization of the finding that specific semantics is
mainly expressed by some key local dimensions (marked in colors)
in the representation space.

all dimensions from large to small, as depicted in Fig. 1(a),
where we can find that some dimensions (marked with col-
ors) have obvious tendencies to represent the semantic con-
cept of ‘man’. Similarly, as shown in Fig. 1(b) and Fig. 1(c),
we show the corresponding results for the semantic concept
‘woman’ (a total of 15,753 pairs) and ‘dog’ (a total of 6,104
pairs). From the results, we can see that semantics is in-
deed mainly represented by some key local dimensions in
the representation space.

2. Learnable Truncation Threshold

For each vector wi
j ∈ R1×d of the learnable matrix Wi, we

design an adaptive sparsity strategy. Specifically, we first
learn a truncation threshold based on the value range of the
learnable weights:

tij = min(wi
j)+(max(wi

j)−min(wi
j)) ·sigmoid(αi), (1)

where αi is a learnable parameter; min(·) and max(·) are
operations for obtaining minimum and maximum values re-
spectively.
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Figure 2. Analysis of why shared visual features can model se-
mantic diversity.

In order to maintain the propagation of gradients in
sparse truncation, we propose an adaptive truncation mask
based on threshold tij as:

maskij = tanh(eλ(w
i
j−tij)), (2)

where λ is a large scaling constant that keeps masks of
items larger than the threshold and discards masks of items
smaller than the threshold. Finally, we apply mask maskij
to the weight wi

j to ensure sparsity, i.e., maskij ⊙wi
j .

3. Why shared visual features can model se-
mantic diversity?

In our work DH-Set, we propose to share visual representa-
tions that have semantic distribution differences due to in-
put variance, and model semantic diversity under the guid-
ance of a set with different textual embeddings. Therefore,
a question will be asked: Why can shared visual features
model semantic diversity? As shown in Fig.2, we analyze
the reason that in the whole d-dimensional representation
space, we constrain the local dimensions with important
semantic representation tendencies in each subspace. As
shown in the colored indicator bars in Fig.2 (for clarity, we
only draw the part with a dimension probability greater than
0.015), different sets of dimensions constitute the represen-

Table 1. Comparison of the overall running time.
DH-Set Running Time(×10−6s) Average
w/o simhybrid 4.64 4.71 4.85 4.67 4.76 4.726±0.0055
w simhybrid 3.39 3.44 3.32 3.43 3.36 3.338±0.0019

tation of specific semantics in the subspace. As a result,
even for shared d-dimensional visual features, different sub-
sets of dimensions within it also characterize diverse seman-
tics. Finally, it is possible to capture the diverse alignment
in Vision-Language (VL), as the example shown at the bot-
tom of Fig.2, where different subspaces can focus on di-
verse visual content to resolve semantic ambiguity in VL
alignment.

4. More Visualization Cases

Here, we give more visualization of the comparison of VL
alignment between our DH-Set and the existing method that
serves as a baseline without semantic diversity modeling, as
shown in Fig.3. Besides, we also give more visualization
of VL alignment in different subspaces, as shown in Fig.4,
where we can see that different subspaces show diversity to
align different visual-linguistic content.

5. Time-Consuming Comparison

As analyzed in the paper, the computational complexity of
our proposed set similarity is reduced by a factor of k com-
pared to the original method (k is the size of the embedding
set, which is greater than or equal to 3 in our method). As
shown in Tab.1, we compare the consumption of the overall
running time per image-text pair with and without hybrid
inference. We can find that the proposed method can sig-
nificantly reduce the computational time, with an average
relative reduction of 28.3%, which proves the efficiency of
the design of our DH-Set.

6. Details of Feature Extraction

ResNet152+BiGRU. Following the existing method [14],
we employ the ResNet-152 [7] pre-trained on ImageNet to
encode the input image, where we apply average pooling
local features and feed the output to one fully-connected
layer to obtain global features. The text is encoded by the
BiGRU [2] with the pre-trained GloVe vectors [11].

Faster R-CNN+BiGRU/BERT. The Faster R-CNN
model [13] in conjunction with ResNet-101, which is pre-
trained on Visual Genome [8], is adopted to detect objects
and other salient regions. Top-K (K=36) local regions are
selected for each image, and we obtain theirs as the mean-
pooled convolutional feature with 2048 dimensions. Then
a fully connected layer is used to transform each region
into final features. The textual encoder uses more advanced
BERT [4], which is a transformer-based model pre-trained
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Figure 3. Comparison of VL alignment between our DH-Set and the baseline without semantic diversity modeling. This verifies that the
proposed DH-Set can align cross-modal details (marked in purple) more accurately and comprehensively, demonstrating its superiority.

Table 2. Comparison on CUB 200-2011 Dataset.
Swin-224+BERT Swin-384+BERT

CUB
200-2011

test set

Methods
I → T T → I

rSum
I → T T → I

rSum
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

LAPS′24[12](SOTA) 69.8 92.5 96.7 53.7 78.3 87.2 478.2 72.9 94.8 97.8 59.0 82.3 89.8 496.6
Our DH-Set 71.1 93.4 97.4 58.4 82.2 89.7 492.2 74.6 95.5 98.3 62.2 85.3 91.7 507.8

on large-scale Wikipedia and Bookcorpus. We add a fully-
connected layer for the last layer of pre-trained BERT to
obtain word features.

Swin Transformer (Swin)+BERT. The visual encoder
is implemented by Swin Transformer [10]. The image is
partitioned into non-overlapping patches based on the spa-
tial distribution. Subsequently, we feed these patches as a
visual token sequence into the vision transformer, which
consists of multiple self-attention layers. We use the im-
age resolutions 224×224 or 384×384. The textual encoder
is employed by BERT [4] as the above.

Vision Transformer (ViT)+BERT. The visual encoder
exploited Vision Transformer (ViT) [5] directly uses the im-
age patches as inputs. Moreover, built on the pre-trained
vision-language models [9, 12], we use the output tokens
from the ViT encoder and the BERT encoder as visual and
textual features, respectively.

7. Adapt to Existing Holistic VL Alignment or
Fragmental VL Alignment

It is worth noting that our proposed DH-Set can be adapted
to the existing holistic visual-language (VL) alignment
[12], which represents images and texts as global fea-

tures for similarity calculation, as well as the existing frag-
ment visual-language alignment [1, 6, 14], which calculates
similarity based on the fine-grained features of visual re-
gions/patches and textual words.

Specifically, under the holistic VL alignment paradigm,
the input visual and textual data are represented as global
feature sets {vgi }ki=1 ∈ Rk×d and {ug

i }ki=1 ∈ Rk×d, respec-
tively. During training, the similarity is calculated accord-
ing to Eq.10 in the paper, while during testing, it is calcu-
lated according to Eq.12 in the paper.

Under the fragmental VL alignment paradigm, the in-
put visual and textual data are represented as local fea-
ture sets. For example, each word is represented as
{ul

i,p}
k,m
i=1,p=1 ∈ Rk×d and each region/patch is represented

as {vli,q}k.ni=1,q=1 ∈ Rk×d, where m and n denote the num-
ber of words and regions/patches, respectively. First, for
each word, we calculate its attention weight with all im-
age regions/patches using Eq.12 and obtain the weighted
aggregated visual embeddings set {v̂li,p}

k,m
i=1,p=1 ∈ Rk×d.

Therefore, for each word’s embeddings set {ul
i,p}

k,m
i=1,p=1

and the corresponding aggregated visual embeddings set
{v̂li,p}

k,m
i=1,p=1 with aligned semantics, we calculate the sim-

ilarity of each word through Eq.10 during training and
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Figure 4. Visualization of VL alignment in different subspaces,
where polysemy can be captured in diverse representation spaces.

through Eq.12 during testing. The final image-text align-
ment is determined by the average of all word similarities.

8. Comparison on CUB 200-2011 Dataset.
Following the earlier set-based method PCME[3] evaluated
via CUB 200-2011 (having 11,788 images of 200 fine-
grained bird categories, per image with ten captions), a
harder and more reliable benchmark [3]. Following the
prior train/test split (150/50 classes), we replicate the exist-
ing SOTA baseline LAPS [6] and our DH-Set (same train-
ing details as in paper, e.g., 30 epochs), as shown in Tab. 2,
equipped with our DH-Set, rSum outperforms >10%, veri-
fying its superiority.
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