
DNF: Unconditional 4D Generation with Dictionary-based Neural Fields

Supplementary Material

Abstract

In this supplementary file, we provide additional detail
about our network architecture (Section 1), along with fur-
ther elaboration on implementation details (Section 2). We
also refer to reader to the supplemental video for further
qualitative results of our DNF for 4D synthesis.

1. Network Architecture Details

1.1. Dictionary Decoder
With a pre-trained shape and motion MLP, we first con-
duct SVD to each linear layer of the MLP and compress
the matrices U ∈ RJ×J , Σ ∈ RJ×F and V ∈ RF×F to
Uk ∈ RJ×k,Vk ∈ RF×k and Σk ∈ Rk×k. For each layer
in the MLP, we then use two linear layers NU ∈ RJ×k

and NV ∈ RF×k to play the role as U and V , replacing
the original linear layer N ∈ RJ×F . To extend the dictio-
nary, we use another two linear layers NUr

∈ RJ×rk and
NVr

∈ RF×rk to learn the residual. During the fine-tuning,
we freeze the parameters of NU and NV and optimize NUr

,
NVr and σ.

1.2. Shape Diffusion
For each shape feature, consisting of nine (L + 1) vectors
(one original latent code and eight coefficient vectors cor-
responding to eight MLP layers), we naturally split them
into nine tokens. Each token is projected to the same di-
mension, set to 1280 in our implementation. The projected
tokens are then summed with positional encoding vectors
corresponding to their positions and fed into a transformer
decoder. The transformer decoder, composed of 32 self-
attention layers, predicts the denoised tokens.

1.3. Motion Diffusion
The overall architecture of motion diffusion is similar to that
of shape diffusion but operates on a sequence of motions
with t frames as input. The t motion features are concate-
nated along an additional time dimension, and a positional
encoding is added in this dimension to ensure the correct
order of the generated motions. Similarly, we project these
(t × L) tokens to an inner dimension and add positional
encoding vectors based on their token positions. In the mo-
tion diffusion model, each layer of the transformer decoder
contains three attention layers:
1. A spatial self-attention layer to aggregate tokens within

each frame,

2. A condition cross-attention layer to incorporate shape
conditions, and

3. A temporal self-attention layer to aggregate tokens
from the same position across different frames (e.g., mo-
tion codes of different frames).

In the sampling stage, our motion diffusion is capable of
generating sequences longer than t frames through diffusion
out-painting with a sliding window. We first generate a t-
frame sequence, using the last k frames as the context, and
let the diffusion model in-paint the following (t−k) frames,
and iteratively repeat this process.

To be more specific, given the motion features {θkm} of
the last k frames, we append (t − k) vectors, {θ(t−k)

m },
which are initialized as random noise of the same size as
the motion features. The goal is to denoise {θ(t−k)

m } using
the context provided by {θkm}.

For each denoising time step d, we aim to denoise
{θ(t−k)

m }d into {θ(t−k)
m }d−1. To achieve this, we first ap-

ply a d-step diffusion process to {θkm}, obtaining a noised
version, {θkm}d, which is then concatenated with {θ(t−k)

m }d.
Subsequently, our motion diffusion model denoises the
combined vectors, producing {θ(t−k)

m }d−1 using a DDIM
sampler.

In practice, our diffusion model is trained to generate 6-
frame motions and uses the last 2 frames as context to in-
paint the subsequent 4 frames, thus extending the generated
motion sequence.

2. Implementation Details
2.1. Data processing
Shape space. For each shape identity in the train dataset,
we sample 200k points on the given mesh. We then cal-
culate its grid SDF with resolution equals to 256, sampling
50k points uniformly within the unit bounding box and 150k
random near-surface points within a distance of 0.02 from
the surface of the shape.

Pose space. Following previous work [1], we sample
200k surface points on each shape identity and store the
barycentric weights for each sampled point at the same
time. Each point is then randomly disturbed with a small
noise N (0,Σ2) along the normal direction of the corre-
sponding triangle in the mesh, with Σ ∈ R3 a diagonal
covariance matrix with entries Σii = σ. Then, for each
t-th deforming shape for the identity, we compute corre-
sponding points by using the same barycentric weights and
the noise to sample the deformed mesh. In our experi-



HyperDiffusion 
[Erkoç et al.’2023]

Time steps

Motion2VecSets 
[Cao et al.’2024]

Ours

Figure 1. Our generations and its NN baseline generated samples.

ments, we sample 50% surface points (σ = 0) and 50%
with σ = 0.002.

2.2. Data augmentation

When training the motion diffusion model, we apply data
augmentation techniques to enhance the model’s robust-
ness. Specifically, for each motion subsequence, we reverse
the frame order to create a new training sample, which sig-
nificantly improves the continuity of the generated motions.
Additionally, we distribute the shape condition S using a
few-step diffusion process, defined as

St = f(St−1, ϵt), for t = 1, . . . , T,

where f represents the diffusion forward function, ϵt is the
added noise, and T is the total number of steps. Here, we
choose T randomly from the range [0, 50].

3. Additional Results

3.1. Visual comparison with state of the art.

Fig. 1 compares a generation of DNF from Fig. 4 and its
nearest neighbors retrieved from baseline generated sam-
ples.

References
[1] Pablo Palafox, Aljaž Božič, Justus Thies, Matthias Nießner,

and Angela Dai. Npms: Neural parametric models for 3d de-
formable shapes. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 12695–12705,
2021. 1


	Network Architecture Details
	Dictionary Decoder
	Shape Diffusion
	Motion Diffusion

	Implementation Details
	Data processing
	Data augmentation

	Additional Results
	Visual comparison with state of the art.


