A. Theoretical Analysis

Assumptions. To derive the sequel propositions and theorems, we first introduce a general assumption about the smoothness
of —log g4 (x) and —log ce(z, y), that is, these two log-likelihood functions are assumed to be continuous differentiable, and
their gradients are L-Lipschitz continuous.

A.l. Proof of Theorem 1

First, we show that the gap between the proximal operators is bounded above.

Qs—1
Qr+1
—log gy is L-smooth, then we know that x — —log ¢4(x) + 5||x — %||? is (p — L)-strongly convex and (p + L)-smooth.
Note that x;_1 = x; — nVhi(x¢), then by the standard convex optimization theory [38], we have
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where Q; = (p — L)/(p + L). Combining (A.1) and part (i), we get that
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A.2. Proof of Theorem 2

Before proving the convergence results of Algorithm 1, we first discuss what the limit points are if Algorithm 1 converges.

Proposition 2. Ler {(x¢, 2z, 1)} be the sequence generated by Algorithm 1. If 2y = Z4_1,X¢ = X¢—1, bt = Mt—1, holds for
some t, then

xi—1 =21, V (logp(x¢—1) +logp(y|xe—1)) =0,

Hence, x;_1 is a stationary point of the minimization problem.

Proof. According to the definition of p;, we have

Xt1 —2Zt—1 = p(pe—1 — pt) = 0.

On the other side, x;_1 € argmin, —log p(x) + (x — z, s} + 5|/x — z¢||?. Then from the first order condition, we obtain
that

Vx,_, (—logp(xe—1) + pt + p(xt—1 — z¢)) = 0. (A.2)
Similarly, according to the definition of z;_;, we know that
Vo, (logp(ylzi—1) — pe + p(x4—1 — z4—1)) = 0. (A.3)

Combining (A.2) and (A.3), we get that

V (—logp(x¢—1) — log p(y[x¢—1)) = 0. O
To prove Theorem 2, we first present a simplified version of the Robbins-Siegmund theorem which will be used later.

Lemma 1 ([43]). Consider a filter { Fy }1, the nonnegative sequence of { Fy, }r-adapted processes { Vi, }x, {Ug tr, and { Zy }
such that ) i 2k < +oo almost surly, and

E[Vit1|Vi] + U1 < Vie + Zi,, Vk > 0.
Then {V; }i, converges and y_, Uy, < +oo almost surly.

The Robbins-Siegmund theorem provided in this paper is a stochastic version. However, we will only consider the
deterministic version in the proof of Theorem 2. We now move on to the proof of Theorem 2.



Proof of Theorem 2. To adapt the formal index settings in optimization perspective, we reverse the index order in the proof.
In other words, we let xj, < X7 _, Z < Z7—k, and py < pr_g, respectively. Moreover, to simplify the notations used in
the proof, we defined ¢g(z) := —log cy(z,y) and f(x) := — log p(x).

Step 1. Let z;, := argmin, £(Xp41,2, ix). According to the assumption of g, we have that the mapping z —
L(Xk+1,2, i) is (p — L)-strongly convex and (p + L)-smooth. Thus the gradient descent steps in Algorithm | show
that

) p— L\ ) oL \
s =zl < (1= 257 ) o= gl < VA (37 )

where d is the dimension of z. The last inequality holds due to the nature of z; being an image, which implies that z;, belongs
Ky
to the interval [0, 1]%. For ease of notation, we define A, := v/d (%) "

On the other side, according to the definition of z;; L1, We have
0=Vg(zp41) — Hr + p(Xk41 — Zjqq)- (A4)
Noting that pe+1 = e + p(Xgt1 — Zg+1), We get
V(z11) = Br+1 + p(Zkt1 — Zg11),

from equation (A.4). Hence, we can obtain an upper bound of the gap between gty +1 and py, by the smoothness of g,

i1 — prll = || V9 (Zis1) — V9 (25) + p (Zi1 — 2k41) — p (25 — 22|
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< L|zjpy — 25 || + 2|21 — 2rta || + 2 ll25 — 22l (A5)
<L (|21 — 2o || + lznen — zell + llza — 25l) + o [|2Zis — 2o || + 212 — 2]
= Lz =zl + (L +p) |21 — 2 || + (L + p) 126 — 2] -

Step 2. Let x; , , := arg min, £(x 2z, ux). Because x — L(X, zg, pi) is (p — L)-strongly convex for all k& > 0, we have
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l|%kt1 — XZHHQ < f (XKpeg1) + g ki1 — well* = £ (x541) — g |
Hence,
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where the last inequality holds because x — L(x, 1, px) is (p + L)-smooth, and x| := arg min, £(x, z, ).



Step 3. Now, we have
L (Xkt1,2k, k) — £ (Xt 1, Zht 1, Hkt1)
= 9g(2k) = 9 (2r+1) + (Br+1, 2k — 2k) + g lzi = zi1|* = p sk — paia|®
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=g(zk) — 9 (ze41) + (V9 (Zr41) 21 — 2k) + (V9 (Zr11) — V9 (Zhy1) » Zos1 — 21)
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Step 4. In this step, we will show that the augmented Lagrangian function sequence {£(xy, Zx, pt%) } & is nonincreasing. Let
Ly = L(Xp, Zk, i ). According to Step 2 and 3, we get that
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L2 2 L 2 L 2 L)é
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Because p > 6L, then there exist constants
L2 2 L 2 L 2 L
C1 = L7 Co = +P +3( +p) s C3 = 73( +P) 5 Cq = (p+ ),
2 p p p—L
such that
a1 (1ze — ziga II” + %6 — Xpg1 1) + Lip1r < Li + A7 + c3AF_1 + cady. (A.6)

Hence that the sequence {L (xx, Zx, p;) } . is decreasing. In the rest of this step, we will show that { £} is bounded from
below. Because we assume that min{ f(z) + g(x) : z = x} > —oo, we obtain that for all k,

"
() + gzx) + (Vo) — pla — 2q). x5 = 2i) + § |1z — i
+ (k) + glzi) — () + (Vg(za) xi = i) + 51z — x|
+ (Vg(zi) — Vy(zr) — p(zr — 2z1.), Xk — 21)
> t0) + 0c8) — = o — 2+ Dl — 2 — E

L2+ 2 . ) (L2+p2)A2_
7p||zk — zi||> > min{ f(z) + g(z)} — fkl

1z — z&ll* — llxr — 2>

> f(xk) +g(xx) —

Hence, the sequence {L (zj, Xk, k) } % is bounded from below.



Step 5. Now we will prove that lim;_,o0 (||zg4+1 — zk||? + [[xk+1 — xx[|?) = 0. For ease of notation, we define my, :=
Zk+1 — z&]|® + || Xk+1 — xx||? forall k = 0,1, ... Summing equation (A.6) for k from 0 to +oc, we get that

oo oo
e ;mk < Lo —inf Ly + ];) (c2A2 + c3A2_ + cady) -

On the other side, recalling the definition of A, and noting that (2L)/(p + L) < 1, we get that >, A? < +oc. Therefore,
the sum of my, for all k is finite (Zk my < +00), which implies that limy_, ., mj; = 0. Moreover, by (A.5), we get that

leer = prga || < Lllzirs — zill + (L + p)(Ak + Ap—1) = 0, ask — oc.
Step 6. In this part, we will show that the algorithm will converge to a stationary point of problem (P). By Step 5, we know that
lim [[xp1 —xkl| = 0, lim [[zgp1 —2ef] = 0, limflppsr — el = 0.

Let (Xoos Zoos Moo ) be the limit point of the sequence. Combing with Proposition 2, we get that x is a stationary point of the
minimization problem (P).

Step 7. In this step, we use the Robbins-Siegmund theorem to get a refine analysis to the convergence rate of the ADMM.
In particular, we prove the sublinear convergence rate. Now define for all k € N,

wg = ——,  Ag:= ho, Akt1 = (1 — wg) A\ + wrmg.
Note that if we show that mj; — 0 as k — oo, we can prove that convergence of the ADMM. Now we have wy, € [0, 1], and

Ak+1 1s a convex combination of {my, . .., my }. Rearranging equation (A.6), we have

k+1 k
%Ak.}rl + £k+1 + %)\k < %)\k + L+ C2Ai + CSAi—l + 40y

Using the Robbins-Siegmund theorem, we have the sequence {k\; }, converges and that ), A\, < +o0. In particular, it

implies that limg_, o, A\, = 0. Note that A\, = % - kA, then we have limy,_, o kA = 0 because ), A\, < +oo. Hence,

A =o (k™).
On the other side, A\, is a convex combination of {my, ..., my}, then we have
min  m; <\, =o (k7). O]
jef0, gy 4 =R (=)

B. Implementation Details

The source code is available in this link.

C. Further Experimental Results

We provide additional quantitative evaluations based on the PNSR and SSIM metrics in Table 5 and Table 6.
In Figure 5, we compare the visual results of our method with GMD without trajectory inpainting.


https://github.com/youyuan-zhang/ADMMDiff

SR (x4) Inpaint (box) Inpaint (random) Deblur (gauss) Deblur (motion)

Method PSNR1 SSIMt PSNR1 SSIMt PSNR{ SSIM{ PSNR{ SSIMt PSNRT SSIM
ADMM-TV 2386 0803  17.81 0814 2203 0784 2237 0801 2136  0.758
Score-SDE [50] 17.62  0.617 1851  0.678 1352 0437 7.2 0109 6.8 0.102
PnP-ADMM [7] 2655  0.865  11.65 0642 841 0325 2493 0812 2465 0825
MCG [9] 2005 0559 1997 0703 2157 0751 672 0051  6.72 0.055
DDRM [26] 2536 0.835 2224 0869  9.19 0319 2336 0767 - -

DPS [8] 25.67 0852 2247  0.873 2523  0.851 2425 0811 2492  0.859

ADMMDiff 28.08 0.857 22.5 0.878 334 0.930 25.1 0.794 25.6 0.827

Table 5. Quantitative evaluation (PSNR, SSIM) of solving linear inverse problems on FFHQ 256 x256-1k validation dataset. Bold indicates
the best. Underline indicates the second best.

SR (x4) Inpaint (box) Inpaint (random) Deblur (gauss) Deblur (motion)

Method PSNRT SSIM{T PSNR?T SSIMT PSNRt SSIMt PSNRT SSIMtT PSNR1 SSIM 1
ADMM-TV 22.17 0.679 17.96 0.785 20.96 0.676 19.99 0.634 20.79 0.677
Score-SDE [50]  12.25 0.256 16.48 0.612 18.62 0.517 15.97 0.436 7.21 0.120
PnP-ADMM [7] 23.75 0.761 12.70 0.657 8.39 0.300 21.81 0.669 21.98 0.702
MCG [9] 13.39 0.227 17.36 0.633 19.03 0.546 16.32 0.441 5.89 0.037
DDRM [26] 24.96 0.790 18.66 0.814 14.29 0.403 22.73 0.705 - -

DPS [8] 23.87 0.781 18.90 0.794 22.20 0.739 21.97 0.706 20.55 0.634

ADMMDiff 25.04 0.688 19.03 0.814 27.93 0.824 23.32 0.716 25.11 0.670

Table 6. Quantitative evaluation (PSNR, SSIM) of solving linear inverse problems on ImageNet 256 x256-1k validation dataset. Bold
indicates the best. Underline indicates the second best.
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Figure 5. Qualitative comparison on controllable motion generation using trajectory guidance. Blue line indicates the path to follow. The
results show that our method better follows the trajectory while being consistent with the motion prior and text prompt.
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