
A. Appendix

A.1. Tokenizer Scalability
We briefly validate the scalability of our tokenizer in
Fig. A1 by leveraging different hidden dimensions of 384,
512 and 768. As is shown, increasing the hidden dimension
improves the performance at all stages of training, demon-
strating the scalability of our approach. We ultimately select
Tokenizer-L for our final tokenizer.
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Figure A1. Scaling the tokenizer improves LPIPS at all stages
of training. Tokenizer-S, Tokenizer-B, and Tokenizer-L have hid-
den dimensions of 384, 512, and 768, with parameter counts of
20.11M, 35.01M, and 77.35M, respectively.

A.2. Diffusion Denoising Steps
We evaluate the impact of the number of diffusion denois-
ing steps on the interpolation performance of our model us-
ing DAVIS, with the visualization results in Fig. A2 and
the quantitative results presented in Tab. A1. As observed,
using random noise fails to capture accurate intermediate
frame motion. Additionally, the model achieves satisfactory
performance with just two denoising steps. Increasing the
number of steps further significantly extends the denoising
time while yielding limited improvement. Therefore, we
ultimately select two denoising steps as the optimal choice.

Denoising Steps DAVIS

LPIPS ↓ FloLPIPS ↓ RT (s)

0 0.7882 0.7907 0.06
1 0.0892 0.1216 0.09
2 0.0874 0.1201 0.12
5 0.0877 0.1201 0.28
20 0.0880 0.1204 1.17
50 0.0874 0.1200 2.81

Table A1. Performance comparison across different denoising
steps on the DAVIS.
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Figure A2. The results of EDEN generated from random noise and
denoised latent.

A.3. 1D Tokenizer vs 2D VAE
The ablation results of Transformer-based tokenizer and
CNN-based VAE are summarized in Tab. A2. As is
shown, our tokenizer significantly outperforms 2D VAE of
LBBDM in reconstructing intermediate frames.

PSNR↑ SSIM↑ LPIPS↓ FloLPIPS↓
LBBDM VAE 26.64 0.945 0.1471 0.2319
Our Tokenizer 34.93 0.978 0.0428 0.0626

Table A2. Performance comparison on the DAIN-HD544p
dataset.

A.4. Increasing interval of input frames
We evaluate the performance of LBBDM and EDEN on
DAIN-HD544p under increasing frame intervals, with the
results summarized in Tab. A3. As is shown, EDEN’s per-
formance in fitting intermediate frames still consistently
outperforms LBBDM.

Method PSNR↑ SSIM↑ LPIPS↓ FloLPIPS↓

2x LBBDM 26.64 0.945 0.1471 0.2319
EDEN 26.85 0.945 0.1321 0.2184

4x LBBDM 19.55 0.855 0.2665 0.3378
EDEN 20.91 0.869 0.2295 0.3064

8x LBBDM 16.09 0.764 0.4026 0.4376
EDEN 17.70 0.795 0.3328 0.3828

Table A3. Comparison of LBBDM and EDEN under different
temporally downsample rates on the DAIN-HD544p dataset.

A.5. Multi-fine-tuning Techniques
We conduct such ablation study on the DAIN-HD544p
dataset. The results in Tab. A4 show a clear improvement
in the tokenizer’s performance after fine-tuning.

PSNR↑ SSIM↑ LPIPS↓ FloLPIPS↓
wo/fine-tuning 23.55 0.901 0.3314 0.3616
w/fine-tuning 34.93 0.978 0.0428 0.0626

Table A4. Performance comparison with and without fine-tuning.



A.6. Ablation studies of tokenizer dimension
An autoencoder’s reconstruction quality directly constrains
the achievable image quality in latent diffusion models. The
contradiction in ?? of the main paper arises because we
used only DiT-B in EDEN due to computational constraints.
However, higher-dimensional tokenizers (24) require larger
DiTs to fully capture distribution transitions.

To further clarify, we also provide ablation results of the
tokenizer combined with DiT on DAIN-HD544p, training
for 200k steps, as shown in Tab. A5. Clearly, the interpo-
lation performance of the tokenizer aligns well with its re-
construction capability (as shown in the main paper) when
integrated with DiT.

PFFM LPIPS↓ FloLPIPS↓
Tokenizer + DiT-B × 0.1528 0.2531
Tokenizer + DiT-B

√
0.1497 0.2503

Table A5. Performance comparison of Tokenizer+DiT-B on the
DAIN-HD544p dataset.

A.7. Different training datasets
We provide the results of LDMVFI and LBBDM trained on
the same dataset, LAVIB, in Tab. A6. Clearly, EDEN still
outperforms them when using the same training data.

PSNR↑ SSIM↑ LPIPS↓ FloLPIPS↓
LDMVFI 25.88 0.937 0.1501 0.2413
LBBDM 26.56 0.944 0.1477 0.2366
EDEN 26.85 0.944 0.1321 0.2187

Table A6. Performance comparison with the same training dataset
on the DAIN-HD544p dataset.

A.8. Same number of diffusion steps
Tab. A7 shows the results on DAIN-HD544p using the same
number of denoising steps. Clearly, EDEN achieves higher
performance with faster speed compared to both LBBDM
and LDMVFI.

Denoising Steps LPIPS ↓ FloLPIPS ↓ RT (s) ↓
LDMVFI

2
0.1501 0.2413 0.525

LBBDM 0.1477 0.2366 0.907
EDEN 0.1321 0.2187 0.250

Table A7. Runtime comparison of various methods (for interpo-
lating a 544x1280 frame) at 2 denoising steps.

A.9. Limitations and Feature Work
Though our method demonstrates significant improvements
in handling complex motions, it still has certain limitations.
Specifically, it struggles with blurring when dealing with
rapid changes in fine details (e.g., text). As illustrated in
Fig. A3, while our method accurately captures the positions

of moving car, the text appear blurred. A possible reason
for this limitation is that our decoder directly applies pixel
shuffle on the tokenizer decoder final layer’s output to gen-
erate the image, which inherently introduces some degree
of blurring. In future work, we plan to explore an effective
pixel decoder network to transform the final output of the
tokenizer decoder into sharper, more realistic images.

Figure A3. Visualization of results with blurred text.

A.10. More Visualizations
We provide additional visualization comparisons against
previous state-of-the-art methods in Fig. A4. These results
demonstrate that our method effectively handles complex
or nonlinear motions in video frame interpolation. In com-
parison, prior methods struggle to accurately model such
motions.
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Figure A4. Visual comparison with different methods, examples selected from DAVIS. Ours outperforms previous methods in both cap-
turing the motion of multiple objects and modeling fast, nonlinear motions.
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