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In this supplementary material, we present:
• Section 1: Training details of ENERGYMOGEN.

• Section 2: Additional results of skeleton-based diffusion
models.

• Section 3: Ablations on λs, λl, and λm for Synergistic
Energy Fusion.

• Section 4: Ablations on the number of latent vectors in
motion VAE.

• Section 5: Ablation study of hyper-parameters in energy-
based cross-attention.

• Section 6: Results of inference time.

• Section 7: Evaluation of foot sliding.

• Section 8: More visual results of energy distributions.

• Section 9: More details on datasets and evaluation
metrics.

• Section 10: Limitation and failure case

1. Implementation Details
We first provide training details of ENERGYMOGEN. For
Motion VAE, both the encoder E and decoder D comprise 9
layers of transformer blocks with a dimension d =256. We
use 10 additional tokens (mean and various tokens) to sam-
ple N =5 latent vectors representing the motion. We use
an AdamW optimizer with a batch size of 1024. We train
300K iterations in total, and the learning rate changes from
0.0001 to 0.00001 after 200K iterations. The weights of re-
construction loss and KL loss are set to 1 and 0.0001. As
for the latent diffusion, we apply a frozen CLIP ViT-L/14

to encode the textual descriptions. Regarding the denoising
autoencoder, we use a 9-layer transformer with a dimension
of 256. To acquire an accurate mapping from textual data
to latent vectors during training, γ is initialized with 0. We
utilize the AdamW optimizer to train the model with a batch
size of 512, with an initial learning rate of 0.0001 for 200K
iterations and decayed to 0.00001 for another 100K itera-
tions. The diffusion model is learned using classifier-free
guidance [3] with an unconditional score estimation rate of
10%. For experiments on CompML, we only finetune the
latent diffusion model for 100K iterations in total with a
learning rate of 0.00005.

For the skeleton-based approach, we use an 8-layer
transformer with a dimension of 512. We follow [12]
to train the model using Adam optimizer with a batch
size of 1024. We train 8000 epochs in total and employ
the CosineAnnealing learning policy with the learning rate
from 0.0002 to 0.00002.

2. Additional Results of Skeleton-Based Diffu-
sion Models

2.1. Text-to-Motion Generation
We conduct experiments on HumanML3D [2] to evaluate
the performance of text-to-motion generation. We use eval-
uation models from Guo et al. [2] and use the same metrics.
The training details of skeleton-based ENERGYMOGEN are
provided in Section 1. Experimental results are shown in
Table 1. Our approach outperforms current state-of-the-
art skeleton-based methods, i.e., ReMoDiffuse [13] and
FineMoGen [14] on R-Precision, Diversity, and MM-Dist,
while achieves comparable results on FID and MModality.

2.2. Motion Temporal Composition
Following FineMoGen [14] and PriorMDM [9], we use the
motion temporal composition task to measure the composi-
tional capacity of our approach. We perform latent-aware
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Methods R-Precision ↑ FID ↓ MM-Dist ↓ Diversity → MModality ↑Top-1 Top-2 Top-3

Real motion 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

MDM [10] 0.418±.005 0.604±.001 0.707±.004 0.489±.025 3.630±.023 9.450±.066 2.870±1.11

MotionDiffuse [12] 0.491±.001 0.681±.001 0.782±.001 0.630±.001 3.113±.001 9.410±.049 1.553±.042

ReMoDiffusion [13] 0.510±.005 0.698±.006 0.795±.004 0.103±.004 2.974±.016 9.018±.075 1.795±.043

FineMoGen [14] 0.504±.002 0.690±.002 0.784±.004 0.151±.008 2.998±.008 9.263±.094 2.696±.079

ENERGYMOGEN (skeleton) 0.528±.003 0.718±.003 0.810±.002 0.139±.007 2.902±.010 9.386±.078 2.549±0.104

Table 1. Comparison with the state-of-the-art diffusion models on the HumanML3D [2] test set. We repeat the evaluation 20 times
for each metric and report the average with a 95% confidence interval. Bold and underlined indicate the best and second-best results.

Methods R-Precision ↑ FID ↓ Diversity → MM-Dist ↓
Ground Truth 0.80 1.6 × 10−3 9.62 2.96

PriorMDM [9] (Double take) 0.59 0.60 9.50 5.61
PriorMDM [9] (First take) 0.59 1.00 9.46 5.63
MotionDiffuse [15] 0.62 1.76 8.55 5.40
ReMoDiffuse [13] 0.64 0.40 9.35 5.24
FineMoGen [9] 0.64 0.45 9.23 5.27

Ours 0.67 0.43 9.52 5.22

Table 2. Quantitative results on the HumanML3D [2] test set. R-Presicion denotes Top-3 accuracy. Bold and underlined indicate the
best and second-best results.

composition to tackle this task.
Specifically, denoting c1 and c2 as two concepts. M t

c1
∈

RN1×dm , M t
c2

∈ RN2×dm denote predicted scores corre-
sponding to two concepts at t-th step, Ni is the motion
length, and dm is the dimension of motions. M t

3 ∈ RN ′×dm

indicates the overlapping part, where N ′ is the number of
interval frame. Each reverse process can be formulated as:

M t
c1,c2

=M t
c1
[: N1 −N ′]⊕ (M t

c1
[N1 −N ′ :]+

M t
c2
[: N ′]−M t

3)⊕M t
c2
[N ′ :],

(1)

where M t
c1,c2

is the final score at t-th step, ⊕ is the con-
catenate operation. We conduct experiments on the Hu-
manML3D dataset, and the results are shown in Table 2.
We implement MotionDiffuse [12], ReMoDiffuse [13], and
FineMoGen [14] using the “first take” from PriorMDM [9].
Our approach is implemented based on Equation 1, and
exhibits performance advantages compared with previous
methods. We provide visual comparisons with PriorMDM,
which can be found on the project page.

2.3. Multi-Concept Motion Generation
In Table 3, we show quantitative results on the MTT [7]
dataset. Our approach without Adaptive Gradient Descent
(AGD) yields results that are competitive with existing
state-of-the-art methods. By combining AGD, our approach

achieves superior performance on R-Precision, TMR-Score,
and Transition distance.

3. Ablations on Synergistic Energy Fusion

We show the effect of hyper-parameters λl, λs, and λm in
Table 4. The results in the first three rows correspond to
“Ours (latent only)”, “Ours (semantic only)”, and “Ours” in
Table 3 of the main paper, respectively.

Then we conduct ablative experiments on the weights
of the two spectra of the energy-based model (latent-aware
and semantic-aware), as shown in the middle five rows (Ta-
ble 4). We find that as the weight of λs increases, the results
align more closely with the text (R-Precision and TMR-
Score), while larger weights for λl produce smoother mo-
tions (Transition distance).

Meanwhile, we also demonstrate that combining multi-
concept motion generation can further improve the perfor-
mance, as shown in the last 4 rows. It can be seen that
Synergistic Energy Fusion with λl = 0.1, λs = 0.7, and
λm = 0.2 achieves best performance.

Note that a more intuitive comparison can be found in
Figure 1.
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Methods R-Presicion TMR-Score ↑ FID ↓ Transition
R@1 ↑ R@3 ↑ M2T M2M distance ↓

MotionDiffuse [12] 10.9 21.3 0.558 0.546 0.621 1.9
MDM [10] 9.5 19.7 0.556 0.549 0.666 2.5
ReModiffuse [13] 7.4 18.3 0.531 0.534 0.699 3.3
FineMoGen [14] 5.4 11.7 0.504 0.533 0.948 9.4

ENERGYMOGEN (skeleton) 11.5 22.6 0.550 0.549 0.670 2.2
ENERGYMOGEN (skeleton) + AGD 11.5 24.4 0.560 0.552 0.643 1.9

Table 3. Quantitative comparison of skeleton-based diffusion on MTT [7]. We compute metrics following STMC [7]. ‘AGD’ denotes
the adaptive gradient descent

Per-crop semantic correctness Realism
λl λs λm R@1 ↑ R@3 ↑ TMR-Score ↑ FID ↓ Transition

M2T M2M distance ↓
1.0 0.0 0.0 9.7 19.6 0.547 0.521 0.917 1.6
0.0 1.0 0.0 15.1 27.5 0.585 0.567 0.569 2.2
0.0 0.0 1.0 12.7 25.4 0.570 0.562 0.592 2.7

0.5 0.5 0.0 13.3 25.5 0.584 0.551 0.740 1.4
0.4 0.6 0.0 12.7 25.0 0.584 0.555 0.730 1.4
0.3 0.7 0.0 13.4 26.4 0.589 0.559 0.694 1.4
0.2 0.8 0.0 13.6 26.9 0.590 0.558 0.668 1.5
0.1 0.9 0.0 14.2 27.5 0.587 0.563 0.613 1.7

0.3 0.4 0.3 14.5 27.1 0.588 0.560 0.669 1.6
0.2 0.5 0.3 14.4 26.9 0.590 0.563 0.628 1.6
0.1 0.7 0.2 15.7 28.0 0.591 0.567 0.604 1.6
0.1 0.8 0.1 14.9 26.7 0.587 0.563 0.615 1.6

Table 4. Ablation of hyper-parameters in Synergistic Energy Fusion on MTT [7]. We find that as the weight of λs increases, the
results align more closely with the text (R-Precision and TMR-Score), while larger weights for λl produce smoother motions (Transition
distance).

4. Ablations on the Number of Latent Vectors
N in Motion VAE

The results are provided in Table 5. For reconstruction, 7
latent vectors achieve the best results. However, it increases
the difficulty of latent diffusion models in training. Using 5
latent vectors to represent the motion obtains the best text-
to-motion generation performance.

5. Ablation Study of Hyper-parameters in
Cross-Attention

We investigate the impact of γattn and γreg We follow [5]
to split γ into attention step size γattn and regularization
step size γreg for compositional and multi-concept motion
generation) in energy-based cross-attention, and the results
are presented in Table 6. We notice that γattn, γreg >= 0.1
significantly degrades the performance, and γattn, γreg =

[0.001, 0.002] achieves best results on MTT.

6. Inference Time
Since our method, like most others, is based on Trans-
former, we compare its inference time with SOTA
Transformer-based diffusion models in Table 7.

7. Evaluation of Foot Sliding
Physical Foot Contact score (PFC), proposed in EDGE [11],
is used to evaluate the foot sliding problem. We provide
a PFC comparison on MTT in Table 8, demonstrating the
effectiveness of the proposed Synergistic Energy Fusion.

8. Energy Distribution Visualization
We show additional contour maps of energy distributions in
Figure 2. We provide two examples of the concept conjunc-



N
R-Precision ↑ FID ↓ MM-Dist ↓ Diversity →Top-1 Top-2 Top-3

Reconstruction

1 0.493±.002 0.681±.002 0.787±.003 0.170±.001 3.160±.015 9.589±.074

3 0.501±.002 0.696±.002 0.792±.004 0.117±.000 3.037±.007 9.621±.091

5 0.508±.003 0.700±.003 0.795±.002 0.080±.000 3.004±.008 9.620±.098

7 0.513±.002 0.704±.003 0.797±.002 0.022±.000 2.984±.009 9.603±.085

Generation

1 0.498±.003 0.686±.004 0.791±.004 0.424±.009 3.085±.009 9.705±.097

3 0.523±.004 0.712±.002 0.814±.002 0.418±.025 2.946±.009 9.443±.136

5 0.523±.003 0.715±.002 0.815±.002 0.188±.006 2.915±.007 9.488±.099

7 0.514±.004 0.713±.005 0.813±.003 0.291±.006 2.938±.012 9.456±.130

Table 5. Study on the number of latent vectors in motion VAE on the HumanML3D [2] test set.

Per-crop semantic correctness Realism
γattn γreg R@1 ↑ R@3 ↑ TMR-Score ↑ FID ↓ Transition

M2T M2M distance ↓
0.0 0.0 12.7 25.4 0.570 0.562 0.592 2.7
0.1 0.2 1.4 4.2 0.498 0.495 1.083 6.1
0.01 0.02 9.1 20.1 0.551 0.547 0.623 2.9

0.005 0.01 6.7 15.3 0.531 0.523 0.806 1.9
0.005 0.005 13.8 25.6 0.570 0.558 0.591 2.7
0.001 0.002 14.0 26.3 0.570 0.560 0.587 2.7

Table 6. Ablation of step size in Adaptive Gradient Descent on MTT [7].

Methods FineMoGen MLD GUESS ENERGYMOGEN

AIT (s) 2.54 0.21 1.79 0.66

Table 7. Inference time. AIT (s) denotes the Average inference
time per sentence in seconds.

Methods multi-concept latent-only semantic-only Ours SEF

PFC ↓ 0.61 0.54 1.05 0.51

Table 8. Evaluation of Foot Sliding. ‘PFC’ denotes the Physical
Foot Contact score.

tion. We visualize the energy distributions of motion latent
representations generated from the denoising autoencoder.
Multi-concept generation combines concepts from both (a)
and (b). Compared with multi-concept generation (i.e., (d)
in Figure 2), energy distributions of composed motion (i.e.,
(c) in Figure 2) show consistent high- and low-energy re-
gions. This demonstrates that complex motion latent distri-
butions can be composed of simple distributions, indicating
that our method is explainable. Such results further explain
the effectiveness of ENERGYMOGEN.

9. More Details on Datasets and Evaluation
Metrics

9.1. Datasets

Our experiments are conducted on three datasets: Hu-
manML3D [2], KIT-ML [8], and MTT [7].
• HumanML3D [2] is a large-scale text-to-motion genera-

tion benchmark that contains 14,616 human motions with
44,970 textual descriptions. The dataset is split with pro-
portions of 80%, 5%, and 15% for training, validation,
and testing, respectively.

• KIT-ML [8] is another leading benchmark for motion
generation from relatively short text. It has 3,911 finely
annotated human motions, with 4888/300/830 for the
training, validation, and test sets.

• MTT [7] has 60 textual descriptions with body part an-
notations. The corresponding motions are collected from
the AMASS dataset [4]. Three texts are randomly com-
posed based on body parts and motion duration through
some conjunction words (e.g., “and”, “while”), resulting
in a test set with 500 samples.

The three datasets use the same motion representation pro-
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Figure 1. Ablation of hyper-parameters in Synergistic Energy
Fusion on MTT [7].

posed in [2].

9.2. Evaluation Metrics
We use evaluation models from Guo et al. [2] to measure the
performance of text-driven human motion generation. We
adopt the same metrics as previous works, including Frechet
Inception Distance (FID) for motion quality, Retrieval Pre-
cision (R-Precision) and Multi-Modal Distance (MM-Dist)
for text-motion consistency, and Diversity and MultiModal-
ity (MModality) for the diversity of generated motions. We
denote two sets of features from the ground truth and gen-
erated motion as m and m̂, respectively.

FID. The Fréchet Inception Distance (FID) measures the
quality of generated motions by comparing their feature dis-
tributions to ground truth motions. It evaluates both the
mean and covariance. Lower FID scores indicate better

quality and closer resemblance to real data. FID can be cal-
culated as:

FID = ||µm −µm̂||2 −TR(Σm +Σm̂ − 2(ΣmΣm̂)
1
2 ) (2)

where µm and µm̂ are mean of two sets of features. Σ is the
covariance matrix.

MM-Dist. MM-Dist is used to measure the distance be-
tween the generated motion and text directly:

MM-Dist =
1

N

N∑
i=1

||mi − m̂i|| (3)

where N is the total number of the motion.

Diversity. To assess the diversity among motions gener-
ated by different textual descriptions in the test set, we ran-
domly select 300 pairs of motions and compute this metric
as follows:

Diversity =
1

300

300∑
i=1

||m̂1 − m̂2|| (4)

MModality. Similar to Diversity, MModality is used to
measure the diversity among motions generated by the same
text. We follow Guo et al. [2] to generate 30 motion sam-
ples from one text and randomly select two subsets, each
containing 10 motions. The formulation of MModality is
similar to the Diversity described above.

For compositional motion generation, we follow
STMC [7] to use R-Precision, TMR-Score, FID, and transi-
tion distance to evaluate the performance. Similar to MM-
Dist, TMR-Score computes the cosine similarity between
the generated motion embedding and text embedding with
TMR model [6]. TEACH [1] calculates Euclidean distance
between two consecutive frames as transition distance.

10. Limitation and Failure Case

Existing latent diffusion models encode motion into a sin-
gle (or a fixed number of) latent vector(s), which limits the
use of per-frame composition algorithms. We propose us-
ing an energy function to directly model the latent vector(s)
encapsulating the overall features, e.g., temporal and skele-
tal features. The energy function (or energy) is additive.
This property enables motion composition by composing
energy functions (generated latent vectors) from different
concepts together via conjunction and negation. However,
our method still struggles with completely novel concepts.
We provide a failure case in Figure 3.
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Figure 3. Failure case.
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