
FATE: Full-head Gaussian Avatar with Textural Editing
from Monocular Video

Supplementary Material

This supplementary material provides additional imple-
mentation details and experimental results. In Sec. 1, we
introduce the preliminaries related to 3DGS and PTI. Sec. 2
describes implementation details regarding datasets, meth-
ods, neural baking and head completion. In Sec. 3, we
present additional experimental results, including monoc-
ular reconstruction, cross-reenactment, more results about
full-head completion, and textural editing. Sec. 4 explains
the trade-off between texture quality and rendering quality
in neural baking. We discuss the failure cases and ethics
considerations in Sec. 5 and Sec. 9, respectively. We in-
tegrate the performance under imperfect poses, computa-
tional efficiency, and additional ablation in Sec. 6, Sec.7,
and Sec. 8, respectively. We highly recommend watching
our supplementary video for more visual results.

1. Preliminary
3D Gaussian Splatting 3D Gaussian Splatting [4] is a
point-based volume rendering method that models each
primitive as a Gaussian kernel, formalized as follows:

G (x) = e−
1
2 (x−µ)TΣ−1(x−µ), (1)

where µ is Gaussian position and Σ is 3D covariance ma-
trix. To ensure that Σ is positive semi-definite, the covari-
ance matrix is further decomposed into a rotation matrix R
and a scaling matrix S:

Σ = RSSTRT . (2)

In the rendering phase, 3D Gaussians are projected onto
the image plane as 2D Gaussians. Zwicker et al. [14] derive
the following formula to approximate the covariance of the
projected 2D Gaussians:

Σ′ = JWΣJTWT , (3)

where W is viewing transformation and J is the Jacobian
of the affine approximation of the projective transformation.
Volumetric rendering is then performed for each pixel to
calculate the final color:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj), (4)

where ci is the color of each Gaussian and αi represents
the density computed by the projected Gaussians with Σ′

multiplied by each Gaussian’s opacity oi.

Pivotal Tuning Inversion We introduce the overall
PTI [9] optimization pipeline as follows. In the first stage,
we search for the pivotal latent code wp by minimizing:

argmin
w

M−1∑
i=0

Lprec

(
IMR
i , IGi

)
, (5)

IGi = GP (w, ci; θ) , (6)

where M is the number of valid multi-view images, Lprec

denotes the perceptual loss [3], IMR is the face image re-
stored by pretrained model MR, GP is the freezed pre-
trained generator, c is the camera pose.

In the second stage, we finetune the generator parameters
by minimizing the following loss term:

Lpt =

M−1∑
i=0

Lprec

(
IMR
i , IGi

)
+ λL2LL2

(
IMR
i , IGi

)
, (7)

IGi = GP (wp, ci; θ
∗) , (8)

where θ∗ is the tuned weights initialized with the pre-
trained weights θ.

2. Implementation Details
2.1. Datasets
We used a total of 20 monocular portrait videos for our ex-
periments. For 10 datasets with DECA-based preprocess-
ing, we optimize the DECA-predicted FLAME coefficients
during training and testing in line with IMAvatar [13]. For
the test-time fine-tuning, we perform FLAME coefficients
optimization for 50 epochs. We optimize the FLAME coef-
ficients with a learning rate of 5× 10−4. For all datasets, a
pre-trained segmentation model [12] is used to remove re-
gions below the neck to facilitate comparison. All methods
except MonoGaussianAvatar are trained for 10 epochs on
the INSTA and Emotalk3D datasets and 50 epochs on the
PointAvatar and NerFace datasets.

2.2. Models
All methods are implemented by PyTorch [8] with differen-
tial Gaussian rasterization from 3DGS [4]. And all meth-
ods are optimized by Adam [6] optimizer. To model the
mouth region, each method incorporates the FLAME tem-
plate with additional faces to close the mouth cavity, similar
to FlashAvatar [11].



Ours For our method, the learning rates for color, opacity,
scale, rotation, and offset are 2.5×10−3, 5.0×10−2, 5.0×
10−3, 1.0× 10−3, and 1.6× 10−3, respectively. The learn-
ing rate for the learnable blendshapes is 1.0 × 10−5. The
opacity of the Gaussians is reset every 6k iterations, and
sampling-based densification is performed every 3k itera-
tions by adding 1k Gaussians. Pruning is conducted every
2k iterations based on an opacity threshold of 5.0× 10−3.

FlashAvatar FlashAvatar maintains a fixed number of
Gaussians in the canonical space and utilizes an MLP-based
deformer to learn the offset of scale, rotation, and position.
And We set the learning rate for the deformer to 1.0×10−4,
for color to 2.5×10−3, for opacity to 5.0×10−2, for scale to
5.0×10−3, and for rotation to 1.0×10−3. The deformer has
a hidden dimension of 256 and an output dimension of 10.
The output channel corresponding to rotation is activated
using an exponential function to ensure non-negativity. The
scale offset, after being activated by the exponential func-
tion, is applied multiplicatively to the original unactivated
Gaussian scale. At initialization, we perform uniform UV
sampling at a resolution of 128. In addition to the uniform
sampling, we apply additional random sampling, resulting
in a total of 16k Gaussians.

GaussianAvatars GaussianAvatars was originally designed
for multi-view video datasets with accurate 3D mesh,
whereas the preprocessing pipeline for monocular videos
cannot obtain such precise geometry prior. Due to its spe-
cific binding mechanism, we set the learning rate for scale
to 1.7×10−2. Densification starts after 10k iterations and is
performed every 2k iterations thereafter. The densification
gradient threshold is 1.0× 10−4, and Gaussians are pruned
with a minimum opacity threshold of 5.0× 10−3.

MonoGaussianAvatar MonoGaussianAvatar employs a
series of MLPs to model geometry, deformation, and Gaus-
sian attributes. The design of the MLPs follows the original
implementation, with a learning rate of 1.0×10−4. Densifi-
cation of Gaussians is performed on an epoch-based sched-
uler, and the scheduler for the number of Gaussians added
during densification remains consistent with the original pa-
per. We perform densification every 5 epochs. Due to the
slow convergence of MonoGaussianAvatar, we train each
subject for 100 epochs.

SplattingAvatar SplattingAvatar constructs Gaussians that
walk on triangles using UV coordinates. We set the learn-
ing rate for UV coordinates (and the normal offset d) to
1.6 × 10−4, while the learning rates for other attributes re-
main consistent with the original Gaussian configuration.
Opacity is reset every 3.5k iterations, and the walking tri-
angle operation is performed every 100 iterations. The den-
sification gradient threshold is set to 2.0 × 10−4, and the
minimum opacity for pruning is 5.0× 10−3. During initial-
ization, we sampled 10k Gaussian points.

64 6464

128

64

128

128

128

256 256 256

256

512 512 1024 512

512

outputinput
11×512×512 11×512×512

Figure 1. BakeNet Architecture. We adopt a U-Net architecture
as the backbone of BakeNet, leveraging its ability to construct rep-
resentations across various frequency bands from noise.

2.3. Neural Baking
We use a simple U-Net [10] as shown in Fig. 1 for Bak-
eNet, with an input of an 11-channel noise map sampled
from a Gaussian distribution, each channel having a size of
512. The first convolutional layer increases the number of
channels to 64, and the encoder of the U-Net processes the
channels up to 1024, doubling the number of channels at
each layer. The decoder then reduces the number of chan-
nels back to 64, and the final convolutional layer adjusts the
output channels to 11. Skip connections are used between
the encoder and decoder.

The 11 channels represent the following: 3 channels for
scale, 3 channels for rotation, 3 channels for color, 1 chan-
nel for opacity, and 1 channel for offset. Specifically, we
use 3 channels to represent the rotation in axis-angle form.

Similar to GGHead [7], we apply a special normalization
to the upsampled values from the output map corresponding
to scale. We calculate the mean and maximum values of
the unactivated scale for the avatar to be baked. Then, the
sampled values v are processed as follows:

s = smax − log (1 + exp (− (v + smean) + smax)) , (9)

where smean and smax represent the mean and maximum
values of the unactivated scale, respectively.

During training, we set the learning rate to 1.0 × 10−3

and use the Adam optimizer to optimize the U-Net.

2.4. Head Completion
We first render around the trained avatar for 30 frames.
On average, DLib [5] deems 2 to 5 images valid. During
PTI [9], we optimize the latent code for 200 iterations and
fine-tune the generator parameters for 200 iterations.

We found that due to the FFHQ alignment used by
SphereHead, the inversion often results in incomplete heads
(see Fig. 2). This leads to the disappearance of some edge



Figure 2. Incomplete Inversion Issues. In typical inversion op-
timization, the neck and top of the head of the portrait often fall
outside the frame, as shown in (a). We obtained the result shown
in (b) by adjusting the camera-to-object distance.

regions when used for completion. Since SphereHead as-
sumes fixed camera intrinsics during training,

K =

4.2627 0 0.5
0 4.2627 0.5
0 0 1

 , (10)

directly modifying the camera intrinsics leads to poor out-
of-domain results. We found a compromise by slightly in-
creasing the camera radius from 2.7 to 3.2 while equiva-
lently transforming the coordinates for the inverse transfor-
mation estimation to ensure the portrait appears within the
viewing frustum.

After PTI is completed, we render 30 images in a full
circle as pseudo-data. One potential issue is that the PTI
results still differ from the real subject, and the coordinates
of the monocular avatar and 3D-aware GAN are difficult to
align. Therefore, we only used the latter half of the 30 im-
ages and incorporated random backgrounds during training
to eliminate some artifacts.

3. Additional Results
3.1. Monocular Results
We provide the quantitative results for each subject in Tab. 5
and Tab. 6, and more qualitative results are presented in
Fig. 7. Our method demonstrates superior performance
across multiple datasets.

Other methods, such as FlashAvatar, achieve excellent
LPIPS scores on the INSTA dataset but perform poorly on
the PointAvatar dataset, which contains complex poses and
expressions. We attribute this to the deformation MLP in
FlashAvatar overfitting the training set. In contrast, our
method mitigates this tendency by employing a linear ap-
proach to implement personalized blendshapes, leading to
better generalization.

MonoGaussianAvatar also utilizes personalized blend-
shapes. However, its Gaussian scales are computed through

the MLP, which prefers smoothness. This smooth nature
produces blurred outputs, leading to relatively high PSNR
and SSIM scores but poorer LPIPS performance.

3.2. Full-head Completion Results

We provide additional results of full-head completion in
Fig. 8. Since monocular videos lack supervision for side
and back views, novel views at large angles tend to perform
poorly before completion. After applying the completion
framework, plausible rendering results are achieved across
most angles. Furthermore, we extend the completion frame-
work to other methods. As shown in Fig. 9, these methods
also yield reasonable results after applying the completion
framework.

We observed that for methods allowing free movement
of Gaussians (e.g., GaussianAvatars, SplattingAvatar), mis-
alignment artifacts are more severe. This is because the
overly flexible Gaussians overfit to misaligned views. How-
ever, these methods still achieve relatively satisfactory com-
pletion results.

3.3. Cross-reenactment Results

We present the results of cross-reenactment in Fig. 10. We
achieve face reenactment by transferring the expression and
pose of the driving avatar to different subjects. Under
monocular video settings, the shape parameters and expres-
sion are not well decoupled. To achieve effective transfer,
we need to compute the delta of the expression between the
driving avatar and the target avatar when both exhibit a neu-
tral expression.

3.4. Editing Results

More textural editing results are shown in Fig. 11. In sticker
editing, we manually craft stickers with simple patterns and
corresponding masks, applying them directly to the color
texture map. In style transfer, we use off-shelf and classic
style transfer models [2] to transfer the texture map. Since
we do not employ non-zero-order spherical harmonic co-
efficients, the results are inherently multi-view consistent
after editing. Compared to methods that require pre-trained
models and optimize inconsistent editing results, direct edit-
ing on the texture map is a faster and easy-to-use approach.

4. Neural Baking Trade-off

As reported in the main content and Tab. 5, 6, neural baking
causes certain metric degradation compared to the avatars
optimized in a point-wise manner. We found that this is
because convolutional neural networks (CNN) struggle to
fit the complex distribution of Gaussian geometry (scale,
rotation, and offset) in the UV space. Several experiments
are designed to illustrate this observation.



Figure 3. Neural Baking Trade-off. We visualize the color texture maps produced by neural baking under different settings and the results
after editing with a checking sticker.

Bake Appearance Only We only use neural baking to ob-
tain texture maps for color and opacity, while the scale, ro-
tation, and offset are retained from the pre-trained avatar.
Attribute Regularization We minimize the difference be-
tween the attributes sampled from the BakeNet output and
the corresponding attributes of the pre-trained avatar:

LV = ∥v∗ − v̄∗∥2 , (11)

where v denotes sampled values and ∗ refers to Gaussian
attributes. We add this regularization term to the baking
training objective with a strength of λV .
Rotation Regularization We impose a regularization term
on the sampled rotation. Since our rotation is relative to
the local triangle, we enforce the rotation around its x-axis
and y-axis to be close to 0. This encourages the Gaussian
rotation around the face’s normal direction:

LR = ∥rx∥2 + ∥ry∥2 , (12)

where rx and ry are rotations in axis-angle representation.
Quantitative and qualitative results are shown in Tab. 1

and Fig. 3. When we bake only the color and opacity while
retaining the pre-trained Gaussian geometric attributes, the
LPIPS metric improves. However, it leads to noisy texture
maps and blurry edited stickers. A straightforward idea is to
make the baked attributes approximate the pre-trained ones.
We conduct experiments under three levels of λV , but the
results show that the metrics are still decreased even at the
cost of degrading the texture maps. This suggests that CNN
struggles to fit the complex geometric distribution of Gaus-
sian attributes in UV space. We believe this is because the

Table 1. The quantitative results of the neural baking trade-off in
bala case. blue indicate the best.

PSNR↑ SSIM↑ LPIPS↓
Default 29.27 0.9278 0.0584
Bake App. Only 28.76 0.9298 0.0522
Attribute Regu. λV = 0.1 29.13 0.9239 0.0582
Attribute Regu. λV = 0.01 29.18 0.9264 0.0583
Attribute Regu. λV = 0.001 29.18 0.9268 0.0581
Rotation Regu. λR = 0.1 29.22 0.9272 0.0592

attributes describing the Gaussian geometry lack local simi-
larity, making them ill-suited for learning with CNN. Addi-
tionally, we introduce a rotation regularization term during
baking, which worsens LPIPS but improves the quality of
the texture maps and editing effects.

These experiments demonstrate that we can flexibly bal-
ance rendering quality and texture map quality in practice.
If better rendering quality is desired, we can opt not to
bake the geometric attributes of Gaussians. Conversely, if
smoother texture maps or better editing effects are desired,
applying regularization terms, such as rotation regulariza-
tion, can make the Gaussians more isotropic and closer to
the surface, thereby resulting in smoother texture maps.

5. Failure Case and Limitation

Our neural baking and full-head completion still have lim-
itations. As mentioned in Sec. 4, since CNN is tricky to
construct Gaussian geometry, neural baking may fail for in-
tricate geometry. For instance, in the case of the woman



Figure 4. Neural Baking Failure. For long hair subjects, as in (a),
direct neural baking will damage the fine geometry of the Gaus-
sians composing the hair as in (b).

Figure 5. Full-head Completion Failure. Since the PTI results
still differ from the real avatar, artifacts appear at the junction, as
shown in the red box in (a). And for avatars with almost no side
view in the training data, as shown in (b), it is difficult to estimate
the exact geometry during PTI, leading to the identity change in
the side view.

with long hair shown in Fig. 4, the hair requires Gaussians
with delicate scale and rotation. However, neural baking
makes it difficult to recover the desired geometry.

In full-head completion, we are training the unobserved
view with pseudo images and the frontal view with real im-
ages. Artifacts, as shown in Fig. 5 (a), may appear in a
certain side-view angle due to the transition between the
two regions. Additionally, for subjects that have almost no
side view in monocular videos (e.g., Internet video focusing
on talking), PTI does not estimate the head with the correct
geometry, resulting in identity change.

6. Noisy Pose Simulation

To train head avatars from monocular videos, we require
frame-by-frame RGB images along with the corresponding
tracked coefficients. We further evaluate the differences be-
tween our method and GaussianAvatars when the camera
translation is imperfect. We add Gaussian noise with vary-
ing σ to camera translations to simulate real-captured data
with inaccurate tracking. Fig. 6 shows our method is more
robust than GA to such conditions. We attribute this to the
regularization of the UV embedding, which constrains the
Gaussians from freely moving to a blurred average solution.

Table 2. Running Time on Optional Parts.

Mono. Recon. Pseudo Gen. Completion Neural Baking
Time ∼ 1.0h ∼ 10min ∼ 15min ∼ 0.5h/1.0h

7. Computational Efficiency
In Tab. 3, we supplement the training time and rendering
FPS under identical hardware conditions. Our method out-
performs other UV space-based methods (FA, SA) regard-
ing shorter training time and higher FPS. Compared to GA,
our method achieves comparable efficiency with superior
rendering quality.

We also measure the average running time of each part in
our proposed method on the INSTA dataset. We just fine-
tune for 1 epoch during completion and 5 epochs during
baking, with training times ranging from 0.5 to 1 hour, de-
pending on whether only the frontal face or the entire head
is baked. The average running time is shown in Tab. 2

8. More Ablations
As shown in Tab. 4, we introduce more ablation settings on
two representative datasets and further report the number of
Gaussian in different settings. We additionally conduct ex-
periments as w/o densify∗, where ∗ indicates that Gaussians
are removed based on opacity criteria. The suboptimal re-
sults further highlight the effectiveness of sampling-based
densification. Moreover, we align our method with densi-
fication strategies based on SA and GA. GA-based densi-
fication tends to produce blurrier results, while SA-based
densification introduces too many redundant Gaussians.

And we supplement more experiments comparing Two-
stage and One-stage. Concretely, we find baking only the
appearance (denoted as Two-stage baking App.) improves
rendering quality compared to Two-stage baking but causes
blurred editing effects, which is visualized and discussed
in Sec. 4 of our supplementary material. Besides, we addi-
tionally report GS numbers in Tab. 4 to show that Two-stage
baking leveraging the evolved distribution achieves compa-
rable performance with much fewer Gaussians than One-
stage baking that uses initialized uniform distribution.

9. Ethics
We used four subjects from EmoTalk3D [1], with all partic-
ipants signing the consent for using their videos in this re-
search and publication. Data from consenting subjects will
be made publicly available. Our method generates realistic
and animatable head avatars, enabling the creation of videos
of real people performing synthetic poses and expressions.
We strictly oppose any misuse of this work to create decep-
tive content intended to spread misinformation or damage
reputations.



Figure 6. Robustness to Imperfect Poses We add noise to camera translation to simulate less well-processed datasets. Note that 1 mm in
the figure approximately corresponds to 1 cm in the real world.

Table 3. Evaluation on Computational Efficiency.

Datasets INSTA Dataset IMAvatar Dataset NerFace Dataset EmoTalk3D Dataset
GS num. Training

time FPS GS num. Training
time FPS GS num. Training

time FPS GS num. Training
time FPS

FA 16k 1.4h 190 16k 4.5h 208 16k 5.5h 206 16k 0.5h 214
SA 558k±188k 1.2h 106 617k±274k 8.0h 109 497k±142k 9.6h 112 489k±171k 1.0h 116

MGA 100k 7.2h 16 100k 13h 16 100k 14h 16 100k 7.5h 16
GA 72k±33k 0.4h 212 38±14k 3.1h 228 31k±7k 4.2h 223 55±12k 0.8h 229

Ours 49k±6k 1.0h 203 38k±6k 3.7h 216 42k±0.5k 4.5h 215 58k±2k 0.5h 216

Table 4. Ablation Study in yufeng and bala.

yufeng bala
PSNR↑ SSIM↑ LPIPS↓ GS num. PSNR↑ SSIM↑ LPIPS↓ GS num.

Ours 29.36 0.9239 0.0694 30k 29.23 0.9329 0.0507 54k
w/o densify∗ 28.81 0.9195 0.0799 14k 28.83 0.9309 0.0526 45k
w/o densify 29.13 0.9217 0.0740 65k 28.91 0.9311 0.0528 65k

w/o ∆E and ∆P 24.78 0.8820 0.1112 33k 24.46 0.9015 0.1081 54k
w/ GA densify 29.62 0.9327 0.0941 80k 26.89 0.9270 0.0966 118k
w/ SA densify 27.74 0.8699 0.1896 803k 26.37 0.8417 0.1827 917k

Two-stage baking 27.78 0.9104 0.0979 30k 29.27 0.9278 0.0584 54k
Two-stage baking App. 28.84 0.9190 0.0797 30k 29.53 0.9298 0.0522 54k

One-stage baking 27.42 0.9085 0.1088 65k 29.12 0.9208 0.0602 65k
Decode only 25.56 0.8878 0.1506 30k 28.25 0.9071 0.0827 54k



Figure 7. More Reconstructed Results. Our method excels at capturing fine structures and preserving high-frequency details (e.g.,
eyebrows, hair strands, eyeglass frames, and pupil colors.).



Figure 8. More Full-head Completion Results. Odd rows display the results under novel views without applying the Full-head completion
framework, while even rows show the results after completion. Our completion framework significantly enhances rendering quality under
large viewing angles.



Figure 9. Universal Completion Results. Odd rows display the results under novel views without applying the Full-head completion
framework, while even rows show the results after completion. Our completion framework applies to various monocular reconstruction
methods.



Figure 10. Cross-reenactment Results. We use the expression and pose sequences from the driving source to animate different subjects,
enabling the transfer of dynamic facial expressions and poses across various avatars.

Figure 11. Editing Results. In (a), we show several results of directly editing the texture map by adding stickers, such as anime portraits,
rainbows, kisses, mustaches, and logos. In (b), we present the results of applying style transfer to the texture map.



Table 5. Full comparison of quantitative results with state-of-the-art methods on INSTA dataset. blue and lightblue indicate the 1st and
2nd best.

Datasets INSTA Dataset
bala biden justin malte 1 marcel nf 01 nf 03 obama person4 wojtek 1

PSNR↑

FlashAvatar 28.04 29.63 27.42 27.54 29.32 24.47 27.24 26.92 21.65 30.66
SplattingAvatar 27.58 28.64 26.43 28.01 28.05 24.11 26.02 25.46 20.84 31.23
MonoGaussianAvatar 28.95 29.97 27.28 27.93 28.84 24.58 27.22 27.39 21.98 29.90
GaussianAvatars 27.99 28.52 26.70 27.53 29.10 23.80 26.00 25.12 20.58 31.27
Ours 28.17 30.06 27.11 28.40 29.07 24.69 27.46 27.04 22.01 31.25
Ours (Baked) 29.42 30.37 27.75 28.34 28.38 24.91 27.43 28.01 21.92 31.49

SSIM↑

FlashAvatar 0.9170 0.9595 0.9580 0.9310 0.9328 0.9303 0.9227 0.9413 0.9009 0.9530
SplattingAvatar 0.9168 0.9501 0.9553 0.9352 0.9265 0.9201 0.9137 0.9341 0.8959 0.9563
MonoGaussianAvatar 0.9297 0.9599 0.9601 0.9340 0.9316 0.9320 0.9200 0.9482 0.9090 0.9480
GaussianAvatars 0.9397 0.9548 0.9609 0.9401 0.9394 0.9286 0.9257 0.9398 0.9032 0.9635
Ours 0.9267 0.9659 0.9606 0.9434 0.9371 0.9344 0.9253 0.9524 0.9097 0.9600
Ours (Baked) 0.9285 0.9672 0.9638 0.9424 0.9356 0.9347 0.9231 0.9547 0.9086 0.9602

LPIPS↓

FlashAvatar 0.0484 0.0267 0.0410 0.0418 0.0757 0.0768 0.0601 0.0375 0.1403 0.0296
SplattingAvatar 0.1284 0.0694 0.0902 0.0838 0.1330 0.1385 0.1286 0.0820 0.1992 0.0659
MonoGaussianAvatar 0.0969 0.0547 0.0585 0.0758 0.1352 0.1146 0.0980 0.0532 0.1471 0.0534
GaussianAvatars 0.0618 0.0458 0.0616 0.0607 0.0943 0.1025 0.0827 0.0606 0.1626 0.0445
Ours 0.0534 0.0341 0.0445 0.0414 0.0760 0.0811 0.0674 0.0426 0.1298 0.0324
Ours (Baked) 0.0583 0.0371 0.0448 0.0451 0.0841 0.0859 0.0755 0.0422 0.1312 0.0346

Table 6. Full comparison of quantitative results with state-of-the-art methods on the PointAvatar dataset, NerFace dataset, and Emotalk3D
dataset. blue and lightblue indicate the 1st and 2nd best.

Datasets PointAvatar Dataset NerFace Dataset Emotalk3D Dataset
yufeng marcel soubhik person1 person2 person3 subject1 subject2 subject3 subject4

PSNR↑

FlashAvatar 25.85 26.67 26.84 30.44 31.47 32.24 25.28 29.96 21.41 25.28
SplattingAvatar 25.09 25.57 23.61 27.35 28.58 32.10 25.16 28.23 20.98 23.81
MonoGaussianAvatar 28.50 27.01 28.98 32.09 33.89 35.35 25.31 30.22 21.46 24.74
GaussianAvatars 25.12 25.15 23.27 27.03 28.62 31.54 25.12 27.71 20.77 23.10
Ours 29.36 27.58 29.28 32.91 33.65 34.54 26.13 30.96 21.56 26.36
Ours (Baked) 27.78 26.37 28.21 31.99 33.34 32.45 - 29.70 21.73 26.96

SSIM↑

FlashAvatar 0.8863 0.9224 0.9221 0.9620 0.9734 0.9569 0.9218 0.9411 0.9087 0.9037
SplattingAvatar 0.8761 0.9056 0.8903 0.9416 0.9516 0.9509 0.9250 0.9350 0.9164 0.9020
MonoGaussianAvatar 0.9259 0.9374 0.9448 0.9719 0.9812 0.9763 0.9434 0.9453 0.9126 0.8827
GaussianAvatars 0.8938 0.9200 0.9095 0.9504 0.9613 0.9560 0.9394 0.9381 0.9200 0.9028
Ours 0.9239 0.9341 0.9418 0.9716 0.9802 0.9691 0.9429 0.9530 0.9208 0.9265
Ours (Baked) 0.9104 0.9282 0.9330 0.9655 0.9761 0.9579 - 0.9505 0.9199 0.9274

LPIPS↓

FlashAvatar 0.1043 0.1021 0.0607 0.0377 0.0217 0.0317 0.0668 0.0435 0.0827 0.0787
SplattingAvatar 0.1502 0.1510 0.1490 0.0835 0.0660 0.0640 0.1403 0.0877 0.1109 0.1484
MonoGaussianAvatar 0.0993 0.1280 0.0656 0.0473 0.0224 0.0249 0.0758 0.0546 0.0770 0.0921
GaussianAvatars 0.1287 0.1321 0.1163 0.0681 0.0415 0.0432 0.0806 0.0590 0.0912 0.1035
Ours 0.0694 0.0876 0.0586 0.0329 0.0186 0.0256 0.0705 0.0414 0.0843 0.0842
Ours (Baked) 0.0979 0.1142 0.0740 0.0460 0.0240 0.0418 - 0.0593 0.0923 0.0952



References
[1] Qianyun He, Xinya Ji, Yicheng Gong, Yuanxun Lu, Zhengyu

Diao, Linjia Huang, Yao Yao, Siyu Zhu, Zhan Ma, Songchen
Xu, Xiaofei Wu, Zixiao Zhang, Xun Cao, and Hao Zhu.
Emotalk3d: High-fidelity free-view synthesis of emotional
3d talking head. In ECCV, 2024. 5

[2] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
ECCV, 2016. 3

[3] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
ECCV, pages 694–711, 2016. 1

[4] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM TOG, 42(4), 2023. 1

[5] Davis E. King. Dlib - a toolkit for machine learning and
computer vision, 2009. 2

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2017. 1

[7] Tobias Kirschstein, Simon Giebenhain, Jiapeng Tang,
Markos Georgopoulos, and Matthias Nießner. Gghead: Fast
and generalizable 3d gaussian heads. ACM SIGGRAPH Asia,
2024. 2

[8] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS. Curran Associates, Inc., 2019. 1

[9] Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel
Cohen-Or. Pivotal tuning for latent-based editing of real im-
ages. ACM TOG, 2021. 1, 2

[10] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2015, pages 234–241, Cham, 2015.
Springer International Publishing. 2

[11] Jun Xiang, Xuan Gao, Yudong Guo, and Juyong Zhang.
Flashavatar: High-fidelity head avatar with efficient gaussian
embedding. In CVPR, 2024. 1

[12] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,
Gang Yu, and Nong Sang. Bisenet: Bilateral segmentation
network for real-time semantic segmentation. In ECCV, page
334–349. Springer-Verlag, 2018. 1

[13] Yufeng Zheng, Victoria Fernández Abrevaya, Marcel C.
Bühler, Xu Chen, Michael J. Black, and Otmar Hilliges. I
M Avatar: Implicit morphable head avatars from videos. In
CVPR, 2022. 1

[14] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and
Markus Gross. Ewa splatting. IEEE TVCG, 8(3):223–238,
2002. 1


	Preliminary
	Implementation Details
	Datasets
	Models
	Neural Baking
	Head Completion

	Additional Results
	Monocular Results
	Full-head Completion Results
	Cross-reenactment Results
	Editing Results

	Neural Baking Trade-off
	Failure Case and Limitation
	Noisy Pose Simulation
	Computational Efficiency
	More Ablations
	Ethics

