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Appendix

In this supplementary material, we include: (1) extended
implementation details covering data processing and train-
ing strategies, (2) additional experimental results, and (3) a
comprehensive description of the network architecture.

A. Implementation Details

Data Processing. We follow the processing protocol of
DUSt3R to generate point maps for most datasets. How-
ever, the DL3DV dataset only provides the annotation for
camera parameters. To include DL3DV into our training
framework, we use the multi-view stereo algorithm from
COLMAP to annotate per-frame depth maps, which are
then converted into point maps. Additionally, we utilize
multi-view photometric and geometric consistency to elim-
inate noisy depth [15]. For the datasets captured as video
sequences, we randomly select 8 images from a single video
clip, with each video clip containing no more than 250
frames. For multi-view image datasets, we randomly select
8 images per scene.

Baselines for Novel View Synthesis. We compare our
novel view synthesis results with MVSplat [3], pixel-
Splat [2], and CoPoNeRF [7] on the DL3DV dataset [9].
However, these methods were originally trained on only 2
views and perform not well under our sparse-view setting
of 8 views. To ensure a fair comparison, we selected the
two source views closest to the target rendering view as
inputs for these baselines (e.g., MVSplat). We found that
selecting two closest source views significantly improved
their rendering quality compared to using all 8 views
directly.

Numbers of Input Image. We have two camera latents:
one for the first image (reference), and one is shared by all
other images (source). The source token is duplicated N-
1 times. Therefore, the model can process any number of
input images.
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Figure 1. Relationship between MVSplat Performance and
Input Views.

B. Experiments

Relationship between MVSplat Performance and Input
Views. We evaluated MVSplat with two views because
its performance degrades with additional input frames, as
shown in Fig. 1, as demonstrated in the figure above. We
therefore reported its optimal results.

Table 1. Performance with a Varying Number of Input Frames.
We study the impact of changing the number of input views on the
performance of our method on the DTU dataset.

Metric 2 Views 6 Views 10 Views 16 Views 25 Views

AUC@30° 1T  59.09 70.45 80.15 81.52 81.81
ACC. | 4.07 2.79 0.94 0.24 0.30

Study between Performance and the Number of Frames.
We analyzed the impact of varying the number of frames on
pose and point map estimation using the DTU dataset. For
this experiment, we randomly selected 2, 6, 10, 16, and 25
source views while fixing two query views for testing pose
accuracy and for evaluating surface accuracy. Under the 2-
view setting, our method generates a reasonable shape, but
its precision remains limited. The results demonstrate that
increasing the number of views leads to improvements in
both pose and surface accuracy. However, these improve-
ments gradually plateau as the number of views continues
to grow, as shown in Tab. 1.



Figure 2. Qualitative Visualization of Sparse-view 3D Recon-
struction on the DTU dataset. We visualize the input image
(left), depth map (middle), and point cloud (right).

Table 2. Dense View 3D Reconstruction on the DTU dataset.
We compare our method with baseline approaches using accuracy,
completeness, and overall metrics under the dense view setting.

Methods Accuracy] Completion] Overallf
Camp [1] 0.835 0.554 0.695
Furu [5] 0.613 0.941 0.777
Tola [11] 0.342 1.190 0.766
Gipuma [6] 0.283 0.873 0.578
MVSNet [17] 0.396 0.527 0.462
CVP-MVSNet [16] 0.296 0.406 0.351
UCS-Net [4] 0.338 0.349 0.447
CER-MVS [10] 0.359 0.305 0.332
CIDER [14] 0.417 0.437 0.427
PatchmatchNet [12] 0.427 0.377 0.417
GeoMVSNet [18] 0.331 0.259 0.295
MASt3R [8] 0.403 0.344 0.374
DUSt3R [13] 2.677 0.805 1.741
Ours 1.932 0.715 1.321

Dense View 3D Reconstruction on the DTU dataset.
We present the results for dense view 3D reconstruction on
the DTU dataset in Tab. 2, although dense reconstruction
is not our primary objective. As observed, our method
achieves better results compared to DUSt3R but falls short
of MASt3R. This is expected since our approach is not tai-
lored for dense reconstruction, whereas MASt3R is specif-
ically optimized for it through the training of matching
heads.

Visualization of Sparse-view Reconstruction. We
present the visualizations of our sparse-view reconstruction
results on the DTU dataset in Fig. 2.
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