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1. Test Settings
In line with common practice, we use the widely-adopted
traditional codec HM-16.26 (HEVC) as the baseline for
calculating BD-rate across all deep learning frameworks.
Additionally, we include results from the more recent
traditional codec VTM-13.2 (VVC), which demonstrates
stronger competitive performance. The configurations used
for encoding are encoder lowdelay main rext for HM-
16.26 and encoder lowdelay main vtm for VTM-13.2.
Detailed testing commands for both codecs are as follows:

−c {config}
− − InputF ile = inputfilename

−− SourceWidth = width

−− SourceHeight = height

−− InputBitDepth = 8

−−OutputBitDepth = 8

−−OutputBitDepthC = 8

−− InputChromaFormat = 444

−− FrameRate = framerate

−− FramesToBeEncoded = 96

−− IntraPeriod = 32

−−DecodingRefreshType = 2

−−QP = qp

−− Level = 6.2

−−BitstreamFile = bitstreamfilename

2. Data Acquisition and Color Spaces
The most consistently used evaluation metric in LVC re-
search is the Rate-Distortion curve. However, test results
can vary depending on the data format. While widely used
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datasets UVG [10], MCL-JCV [13], and HEVC [1] are pro-
vided in the YUV420 color space, a standard practice is
to convert these video sequences to the BT.601 RGB color
space using FFmpeg. In contrast, recent works, such as
DCVC-DC [6], have shifted toward using the BT.709 RGB
color space, which generally yields better results compared
to BT.601. Additionally, some of the latest studies [7] di-
rectly evaluate models in the native YUV420 color space to
align more closely with traditional codec performance.

In this paper, we primarily present RD-curves in the
BT.601 color space, as it allows for a broader comparison
across existing LVC models. To provide a broader per-
spective, the supplementary material includes comparisons
across the BT.601, BT.709, and YUV420 color spaces. As
the majority of LVC papers did not have their source code
or trained models readily available at the time, we have to
reserve to extract data directly from their papers. These ex-
tracted results from different studies can be directly com-
pared within respective color space as they all follow the
same 32-frame GoP configuration for a total of 96 frames
in P-frame compression settings. Table 1 listed the different
results available in each paper.

3. BT.601 color space results

To evaluate the performance of video compression models,
four widely used datasets—UVG, MCL-JCV, HEVC Class
B, and Class C—are provided in the YUV420 format. The
standard practice in LVC research involves converting these
video sequences into individual frames. Most studies follow
the default BT.601 RGB conversion protocol in FFmpeg for
consistency.

In the main paper, we adhered to this established prac-
tice, presenting the performance of our proposed model
tested in the BT.601 RGB color space. This approach en-
ables a direct comparison with a wide range of previous
state-of-the-art (SOTA) works. Larger versions of these
comparison results are provided in Fig. 1 and Fig. 2 for
additional clarity and detail.
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Dataset UVG MCL-JCV HEVC-Class B HEVC-Class C
Models PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM

CANF-VC[5]
601

709[6]
601

709[6]
601

709[6]
601

709[6]
601

709[6]
601

709[6] - -

VCT[9] 601 601 601 601 601[8] - 601[8] -

DCVC-TCM[11]
601[12]
709[6]

601[12]
709[6]

601
709[6]

601
709[6]

601
709[6]

601
709[6]

601[12]
709[6]

601[12]
709[6]

DCVC-DC[6]
601[3]

709
YUV420

709
601[3]

709
YUV420

709
601[3]

709
YUV420

709
709

YUV420 709

ST-XCT[4] 601 - 601 - 601 - 601 -
DHVC[8] 601 601 601 601 601 601 601 601
CANF-VC++[2] 601 - 601 - 601 - - -
SDD[12] 601 601 601 601 601 601 601 601
MCRT[3] 601 - 601 - 601 - - -
DCVC-FM[7] YUV420 - YUV420 - YUV420 - YUV420 -

FLAVC(ours)
601
709

YUV420

601
709

YUV420

601
709

YUV420

601
709

YUV420

601
709

YUV420

601
709

YUV420

601
709

YUV420

601
709

YUV420

Table 1. The available data format from each paper. 601, 709 and YUV420 stands for different color space. If a citation follows a specific
color space, it indicates that the results for that format were obtained from another cited study rather than directly reported by the authors.

4. BT.709 color space results

While traditional BT.601 color space conversion has been
the standard in LVC research, the more modern BT.709
color space is specifically designed for high-definition (HD)
videos with a spatial resolution of 1920 × 1080. Con-
sequently, an increasing number of LVC studies, such as
[6, 7], have shifted their testing to target the BT.709 RGB
color space. Generally, models exhibit better performance
when evaluated in BT.709 compared to BT.601. We present
our results in the BT.709 RGB color space in Fig. 3 and
Fig. 4. Usually, no additional optimization is needed dur-
ing training as both data formats are in RGB color space.

5. YUV420 color space results

Traditional codecs are inherently designed to compress
video data in the YUV420 color space. However, this
characteristic was not widely adopted in LVC studies un-
til recently. DCVC-DC [6] was the first to evaluate and
present their model performance directly in the YUV420
color space, followed by DCVC-FM [7], which further
embraced this approach. In this work, we also evaluated
FLAVC in the YUV420 color space, with results presented
in Fig. 5. Unlike DCVC-FM, however, we did not incorpo-
rate YUV-specific loss functions [7] during training, leading
to suboptimal performance in this format. In future studies,
we aim to optimize our method specifically for the YUV420
color space to improve its effectiveness.

6. Qualitative Studies

In this section, we provide additional visual comparisons
across various compression methods. As illustrated in Fig.
6, FLAVC demonstrates consistently superior visual fidelity
compared to the other methods evaluated. These tests were
conducted on all four datasets in the BT.601 color space.
More descriptions for the visualization in caption.

References
[1] Frank Bossen. Common test conditions and software refer-

ence configurations. 2010. 1
[2] Peng-Yu Chen and Wen-Hsiao Peng. CANF-VC++: enhanc-

ing conditional augmented normalizing flows for video com-
pression with advanced techniques. CoRR, abs/2309.05382,
2023. 2

[3] Yi-Hsin Chen, Hongfu Xie, Cheng-Wei Chen, Zong-Lin
Gao, Martin Benjak, Wen-Hsiao Peng, and Jörn Oster-
mann. Maskcrt: Masked conditional residual transformer for
learned video compression. IEEE Transactions on Circuits
and Systems for Video Technology, 2023. 2

[4] Zhenghao Chen, Lucas Relic, Roberto Azevedo, Yang
Zhang, Markus Gross, Dong Xu, Luping Zhou, and Christo-
pher Schroers. Neural video compression with spatio-
temporal cross-covariance transformers. Proceedings of the
31st ACM International Conference on Multimedia, 2023. 2

[5] Yung-Han Ho, Chih-Peng Chang, Peng-Yu Chen, Alessan-
dro Gnutti, and Wen-Hsiao Peng. CANF-VC: conditional
augmented normalizing flows for video compression. In
Computer Vision - ECCV 2022 - 17th European Conference,



Figure 1. Overall Rate-Distortion performance comparison on UVG and MCL-JCV datasets: Left : PSNR, Right : MS-SSIM. The two
traditional methods are marked with dashed lines. RD-curve in BT.601 color space.
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Figure 2. Overall Rate-Distortion performance comparison on HEVC Class B and HEVC Class C datasets: Left : PSNR, Right : MS-
SSIM. The two traditional methods are marked with dashed lines. RD-curve in BT.601 color space.
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Figure 3. Overall Rate-Distortion performance comparison on UVG and MCL-JCV datasets: Left : PSNR, Right : MS-SSIM. The
traditional method is marked with dashed lines. RD-curve in BT.709 color space.



Figure 4. Overall Rate-Distortion performance comparison on HEVC Class B and HEVC Class C datasets: Left : PSNR, Right : MS-
SSIM. The traditional method is marked with dashed lines. RD-curve in BT.709 color space.



Figure 5. Overall Rate-Distortion (RD) performance comparison on the UVG, MCL-JCV, HEVC Class B, and HEVC Class C datasets
in the YUV420 color space. Traditional methods are represented by dashed lines for clarity. Notably, our proposed method is the only
approach in this comparison that has not been specifically optimized for the YUV420 format, underscoring the potential for further
improvements through targeted optimization.



Figure 6. Comparison of different compression models visualized. On the HoneyBee video, FLAVC excels in reconstructing fine details,
particularly on the small moving bee. In ShakeNDry, our model effectively preserves the intricate details of water droplets despite their
complex motion and noise. In videoSRC16, FLAVC accurately retains the metal structure’s pattern, as well as small details like the car’s
license plate and tail light. For ParkScene and RaceHorseC, our model successfully preserves the texture of the woman’s shirt and the
horse’s mane, even though the motion in these scenes poses significant challenges.
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