
Finer-CAM : Spotting the Difference
Reveals Finer Details for Visual Explanation

Supplementary Material

The supplementary material is organized into the following
sections. Appendix A provides more details of the method
implementation and experiment settings. Appendix B dis-
cusses experimental results on more datasets and model ar-
chitectures, and Appendix C presents more visualizations
of the proposed Finer-CAM.

A. More Implementation Details
A.1. Sorted Weight Similarity Distribution
We show the distribution of sorted weight similarity of three
datasets in Fig. 1. Here we provide the implementation de-
tails for reproducing the curves. First, we train a linear clas-
sifier for each dataset on top of the pre-trained CLIP visual
encoder [32]. The visual encoder is frozen during the clas-
sifier training. Next, we calculate the similarity matrix S
between the weights of the linear classifier with each ele-
ment Spq defined by:

Spq =
wp ·wq

∥wp∥2∥wq∥2
, (11)

where wp and wq represent the linear classifier weights for
class p and class q, respectively. The diagonal elements are
subtracted by 1 to eliminate self-similarity. The similarity
matrix is then sorted in descending order for each class:

Ssorted = sort rows(S), (12)

such that the first element of each row has the largest sim-
ilarity to the query class. Last, we compute the class-wise
average of the sorted similarity values to generate the dis-
tribution curve. The shaded regions in the figure stand for
standard variation. Therefore, the leftmost point of each
curve reflects the average similarity between one class and
its most similar counterpart. Although after model training,
the average similarity is low, for each class, there still exist
certain other classes with high similarities.

A.2. Activation Faithfulness Examination
Based on the extension to multi-modal zero-shot models,
the proposed Finer-CAM can be applied to verify if the
prediction of a linear classifier faithfully aligns with real
class attributes, as illustrated in Sec. 4.3. Here we provide
more implementation details of the process. The CUB-200
dataset [40] provides continuous attribute labels for each
class. Given one target class, we conduct subtraction be-
tween the attribute labels of the target class and that of the

Table 3. Classification accuracy (%) of linear probing on DINOv2
and CLIP backbones on five datasets.

Model Birds-525 CUB-200 Cars Aircraft FishVista

CLIP 95.3 58.4 64.9 53.9 64.6
DINOv2 97.5 66.4 78.7 83.9 79.6

most similar class. The top 3 attributes with the largest
value difference are selected as discriminative attributes,
and are to be highlighted in the image.

Next, we generate two saliency maps for one given im-
age of the specified class. The first saliency map is obtained
based on Eq. (5) to maximize the difference between the
target class and similar class prediction logits. It reflects the
distinctions recognized by the classifier model. The sec-
ond saliency map is obtained by setting text attribute labels
and the general category “bird” as comparing pairs in the
zero-shot classification setting. It shows the “ground truth”
difference between the two classes. Subsequently, we can
compare if the classifier-based saliency map activates sim-
ilar regions as the attribute-based one. An aligned saliency
map pair indicates that the classifier is looking at correct
hints to distinguish the image. Oppositely, if the saliency
maps misalign, either the classifier is not working as ex-
pected, or there are certain traits not labeled by the dataset.

A.3. Dataset Information
We utilized five publicly available datasets to evaluate our
method. Below, we summarize the key characteristics of
each dataset, including the number of categories, sample
distributions, and additional details provided by the respec-
tive dataset sources.
• Birds-525 [31]: This dataset comprises 525 bird species

with 84,635 training images and 2,625 validation images.
It provides a diverse collection suitable for fine-grained
classification tasks.

• CUB-200 [40]: This dataset is a benchmark for fine-
grained categorization with 11,788 images across 200
bird species. The dataset includes 5,994 training images
and 5,794 testing images, with detailed annotations such
as subcategory labels, part locations, and bounding boxes.

• Cars [20]: This dataset contains 16,185 images of 196 car
models, split into 8,144 training images and 8,041 testing
images. Categories include make, model, and year, mak-
ing it ideal for subtle visual recognition tasks.

• Aircraft [23]: This dataset comprises 10,200 aircraft im-
ages annotated across 70 family-level categories. The



Table 4. The quantitative evaluation results on the proposed Finer-CAM and baseline CAM methods on FishVista and Aircraft. The
abbreviations stand for deletion, relative drop, and localization, respectively.

Method
FishVista Aircraft

Del. ↓ RD.@0.05 ↑ RD.@0.1 ↑ Del. ↓ RD.@0.05 ↑ RD.@0.1 ↑ Loc. ↑

Grad-CAM [37] 0.037 0.177 0.205 0.039 0.097 0.112 0.608
+ Finer 0.039 0.193 0.217 0.039 0.113 0.127 0.614

Layer-CAM [17] 0.049 0.163 0.181 0.037 0.101 0.113 0.662
+ Finer 0.049 0.196 0.210 0.039 0.113 0.124 0.664

Score-CAM [41] 0.051 0.158 0.188 0.050 0.074 0.086 0.595
+ Finer 0.052 0.174 0.203 0.050 0.085 0.094 0.602

Table 5. The quantitative evaluation results on the proposed Finer-CAM and baseline CAM methods with DINOv2 as the backbone. The
abbreviations stand for deletion, relative drop, and localization, respectively.

Method
Birds525 CUB Cars

Del. ↓ RD.@0.05 ↑ RD.@0.1 ↑ Del. ↓ RD.@0.05 ↑ RD.@0.1 ↑ Loc. ↑ Del. ↓ RD.@0.05 ↑ RD.@0.1 ↑ Loc. ↑

Grad-CAM [37] 0.252 0.041 0.069 0.171 0.124 0.157 0.500 0.088 0.222 0.280 0.619
+ Finer 0.250 0.049 0.080 0.165 0.151 0.185 0.530 0.091 0.243 0.306 0.632

Layer-CAM [17] 0.254 0.047 0.075 0.143 0.174 0.210 0.682 0.105 0.210 0.270 0.618
+ Finer 0.258 0.055 0.079 0.148 0.192 0.230 0.729 0.108 0.236 0.294 0.647

Score-CAM [41] 0.282 0.042 0.062 0.174 0.125 0.157 0.630 0.152 0.127 0.173 0.579
+ Finer 0.284 0.036 0.064 0.176 0.137 0.168 0.640 0.152 0.141 0.191 0.586

Table 6. The quantitative evaluation results on the proposed Finer-CAM and baseline CAM methods on FishVista and Aircraft with
DINOv2 as the backbone. The abbreviations stand for deletion, relative drop, and localization, respectively.

Method
FishVista Aircraft

Del. ↓ RD.@0.05 ↑ RD.@0.1 ↑ Del. ↓ RD.@0.05 ↑ RD.@0.1 ↑ Loc. ↑

Grad-CAM [37] 0.132 0.206 0.270 0.178 0.242 0.309 0.561
+ Finer 0.135 0.224 0.290 0.178 0.270 0.339 0.586

Layer-CAM [17] 0.129 0.215 0.278 0.168 0.286 0.367 0.729
+ Finer 0.134 0.220 0.288 0.170 0.312 0.383 0.749

Score-CAM [41] 0.154 0.159 0.210 0.198 0.182 0.257 0.611
+ Finer 0.159 0.173 0.229 0.203 0.194 0.264 0.653

dataset is divided into training, validation, and test sub-
sets of 3,334 images each, with hierarchical annotations
for classification.

• FishVista [24]: This dataset is a large collection of
60,000 fish images spanning 1,900 species, designed for
species classification and trait identification. We use
a subset of 414 species, with 35,328 training images,
4,996 validation images, and 7,556 test images. It in-
cludes fine-grained annotations and pixel-level segmen-
tations for 2,427 images.

B. More Experimental Results

B.1. Model Accuracy

We present the classification accuracy of linear probing
on two backbones, CLIP [32] and DINOv2 [28], on five
datasets. Tab. 3 summarizes the results. Generally, DINOv2

provides visual embeddings with better quality and achieves
higher classification accuracy. We use OpenCLIP ViT-B-16
(pre-trained on LAION-400M) in all the experiments.

B.2. Results on FishVista and Aircraft
In addition to Tab. 1, we also conduct the quantitative
evaluation on the FishVista [24] and Aircraft [20] datasets
in Tab. 4. Finer-CAM yields similar performance on the
deletion AUC as baselines while performing much better in
terms of relative drop and localization metrics. The perfor-
mance superiority further supports the effectiveness of the
proposed Finer-CAM method.

B.3. Results on DINOv2
We adopt the pre-trained CLIP model [32] as the back-
bone in the previous experiments. Here, we further employ
DINOv2 [28] to extract visual embeddings for generating



Table 7. The comparison of different aggregation strategies. Del.
and RD.@0.05 represent deletion AUC and relative drop when
masking out the top 5% activated pixels, respectively.

Aggregation
Before ReLU After ReLU
Max Avg Avg

Del. ↓ 0.081 0.080 0.081
RD.@0.05 ↑ 0.184 0.192 0.191

saliency maps. We report the results on the five adopted
datasets in Tab. 5 and Tab. 6. Similarly, the proposed Finer-
CAM achieves higher relative drop and localization per-
formance compared with baselines. It indicates that Fine-
CAM can be applied to a variety of architectures and pro-
vide effective interpretation. It can be observed in Tab. 3
that the linear classifier trained on top of DINOv2 achieves
higher accuracy than that on CLIP. As a result, it requires
deleting more pixels to decrease the confidence of the tar-
get class, leading to larger deletion AUC values and smaller
relative drop in some cases compared with CLIP.

B.4. Aggregation strategy.
There are multiple potential strategies to aggregate the ac-
tivations from different comparison references (cf. Eq. (8)).
Tab. 7 summarizes the comparison of three aggregation
ways. Generally, averaging the activation weights from
difference references before the ReLU operation yields the
best performance.

C. More Visualizations
C.1. Failure Cases
We include some failure cases in Fig. 10. In these exam-
ples, the baseline Grad-CAM highlights large portions of
the images that are not the target objects. Through further
analysis, it often happens when the classifier fails to provide
correct prediction. Under this circumstance, Finer-CAM
also cannot interpret the decision effectively. Finer-CAM
may degenerate to baseline methods when the logit similar-
ity does not reflect visual similarity, i.e., the target class is
significantly different from others.

C.2. Multi-modal Interaction
We demonstrate that in addition to interpreting classifiers,
the proposed Finer-CAM can also be applied to multi-
modal scenarios to localize concepts in the images. We
provide more examples in Fig. 11. Using Grad-CAM
with the target concept alone often leads to inaccurate or
wrong activations. In comparison, with a base concept (e.g.,
“bird” or “car”) as reference, emphasizing their difference
produces substantially more accurate localization of fine-
grained traits or object parts. We also compare the local-
ization capability with a recent method GEM [4]. GEM is

Original Similar Grad-CAM Finer-CAM

Figure 10. Visualization of some failure cases where Finer-CAM
cannot produce better saliency maps than the Grad-CAM baseline.

capable to ground the target object in the images. However,
when asked to localize fine-grained traits or object parts, it
still yields activations over the entire object. Finer-CAM,
comparatively, is a better tool to highlight details.

C.3. Qualitative Comparison
We visualize more examples in Fig. 12 on different datasets.
The comparison also includes two XAI methods RISE [30]
and Mask [12]. The results are obtained with DINOv2 [28]
as the backbone. Comparatively, the proposed Finer-CAM
activates the most discriminative image regions that can tell
the difference between the target class and similar classes,
and also suppresses the noise in the background.

C.4. Extrapolation
The proposed Finer-CAM highlights those discriminative
image regions that maximize the prediction difference yc −
γyd between the target class c and the similar class d. We
have tested different γ settings from 0.0 to 1.0 in the main
text. We also visualize the extrapolation case when γ =
2.0 in Fig. 13. Generally, the activations are more tensely
highlighting subtle details.

C.5. Reverse Comparing
The reverse comparing aims to look for features predictive
of the similar class from the target image, which maximize
yd − yc. The visualization examples are shown in the last
column of Fig. 13. The generated saliency maps can locate
some traits that are predictive of the similar class, instead of
the traits highlighted by Finer-CAM.
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Figure 11. Visualization of multi-modal localization of fine-grained traits or object parts. For each original image, we aim to locate the
target concept. By emphasizing the difference between the target concept and the original concept (“bird” or “car”), Finer-CAM accurately
localizes the target image regions.
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Figure 12. Qualitative comparison of the saliency maps generated by baseline CAM methods (Grad-CAM [37], Layer-CAM [17], and
Score-CAM [41]), the proposed Finer-CAM applied on these three baselines, and other XAI methods (RISE [30] and Mask [12]).
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maze of explainable ai: A systematic approach to evaluat-
ing methods and metrics. arXiv preprint arXiv:2409.16756,
2024. 3, 5, 7

[20] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
ICCVW, pages 554–561, 2013. 3, 5, 6, 1, 2

[21] Scott M. Lundberg and Su-In Lee. A unified approach to in-
terpreting model predictions. In NeurIPS, page 4768–4777,
2017. 7

[22] Scott M Lundberg and Su-In Lee. A Unified Approach to
Interpreting Model Predictions. In NeurIPS, 2017. 3

[23] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew
Blaschko, and Andrea Vedaldi. Fine-grained visual classi-
fication of aircraft. arXiv preprint arXiv:1306.5151, 2013.
3, 5, 1

[24] Kazi Sajeed Mehrab, M Maruf, Arka Daw, Harish Babu
Manogaran, Abhilash Neog, Mridul Khurana, Bahadir Al-
tintas, Yasin Bakis, Elizabeth G Campolongo, Matthew J
Thompson, et al. Fish-vista: A multi-purpose dataset for
understanding & identification of traits from images. arXiv
preprint arXiv:2407.08027, 2024. 5, 2

[25] Dang Minh, H Xiang Wang, Y Fen Li, and Tan N Nguyen.
Explainable artificial intelligence: a comprehensive review.
Artificial Intelligence Review, pages 1–66, 2022. 2

[26] Mohammed Bany Muhammad and Mohammed Yeasin.
Eigen-cam: Class activation map using principal compo-
nents. In IJCNN, pages 1–7. IEEE, 2020. 3

[27] Youngrock Oh, Hyungsik Jung, Jeonghyung Park, and
Min Soo Kim. Evet: enhancing visual explanations of deep
neural networks using image transformations. In WACV,
pages 3579–3587, 2021. 2

[28] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
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