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Supplementary Material

A. Method and Experimental Details
Pre-fitter The ARM pre-fitter consists of three sub-modules
designed to predict the distribution at sub-images 2, 3, and 4
(cf. Figure 2). The image is rearranged in the order of sub-
image autoregression, transforming a 3 × H × W image
into a 12 × H/2 × W/2 format. For each sub-module, a 3x3
convolution is first applied to extract 32-channel features,
followed by a residual block [1] with 32 channels. Finally,
a 3×3 convolution layer is used to predict the distribution
parameters. ReLU activations are employed throughout the
process.
Overfitter The architecture of the overfitter is fixed for all
test images. We use a four-level hierarchy of latent vari-
ables. We use the learned upsampler proposed by [5] with
a kernel size of 8. Following the Cool-Chic series [4], we
model the distribution of latent variables using a Laplace
distribution.

For the latent ARM, we employ two linear layers with
ReLU activations and 24 channels, along with a skip con-
nection. The synthesizer consists of a 3×3 convolution
layer followed by two residual blocks, with each block con-
taining a single convolution layer, unlike the two layers used
in the ARM pre-fitter. The hidden layers have 24 channels
with GELU [2] activations.

To train the overfitter, we use the same strat-
egy proposed by C3 [3] and the implementation
available at https : / / github . com / Orange -
OpenSource/Cool-Chic. For entropy coding of the
latent variables, we use the entropy coder from FSAR
[6], available at https://github.com/alipay/
Finite _ State _ Autoregressive _ Entropy _
Coding/tree/main/cbench. Additionally, we
found that varying the initialization of a leads to different
results for each image. Consequently, we performed rate
optimization by training twice with initial values of a = 1
and a = 0.01, selecting the best model for each case,
which will increase the encoding time without influencing
decoding speed. For a fair comparison, all other methods
in Table 2 and Table 3 employ a similar rate optimization
strategy. They are also overfitted twice and the best result
for each image is selected.

B. Compared Methods
• PNG: We use the Pillow library, version 10.3.0. https:
//github.com/python-pillow/Pillow

• JPEG-LS: We use the pillow-jpls library, version 1.3.2.
https : / / github . com / planetmarshall /
pillow-jpls

Figure 4. Part of the training loss on the Kodak dataset.

• JPEG2000: We use the open-jpeg library, version v2.4.0.
https://www.openjpeg.org/

• WebP: We use libwebp, version 0.6.1. https://
github.com/webmproject/libwebp We use the
slowest preset with -z 9.

• FLIF: We use flif, version 0.3. https://github.
com/FLIF-hub/FLIF We use the slowest preset with
-E 100.

• JPEG-XL: We use libjxl, version 0.9.0. https://
github.com/libjxl/libjxl We use the slowest
preset with -e 9.

• L3C: We use the official implementation from https:
//github.com/fab-jul/L3C-PyTorch.

• LLICTI: We use the official implementation
from https : / / github . com / kamisli -
icpl/LLICTI.

• LC-FDNet: We use the official implementation from
https://github.com/myideaisgood/LC-
FDNet.

• DLPR: We use the official implementation from https:
/ / github . com / BYchao100 / Deep - Lossy -
Plus-Residual-Coding.

• ArIB-BPS: We use the official implementation from
https://github.com/ZZ022/ArIB-BPS.

C. Additional Results
We visualize the training loss on the Kodak dataset with a =
1 initialization in Figure 4. FNLIC could achieve similar
performance with fewer training steps.

D. Discussion on Encoding Time
Due to the overfitting process, FNLIC requires significantly
longer encoding time compared to pre-fit-based methods - a
common limitation shared by INR-based methods. For in-
stance, ArIB-BPS [7] requires only 14 seconds to encode a
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768×512 image, which is substantially faster than FNLIC.
However, as demonstrated in Tables 1 and 2, this overfitting
process enables remarkable improvements in decoding ef-
ficiency. When considering FNLIC’s compression ratio of
3.36 without overfitting on the Kodak dataset, we observe a
consistent trade-off between compression ratio and decod-
ing complexity, where higher compression ratios typically
demand greater decoding complexity.

Table 2 reveals that our overfitting strategies achieve a
significant BPD gain of 0.48 while introducing negligible
decoding complexity overhead. This enables FNLIC to
match the compression ratios of LC-FDNet, while achiev-
ing more than 45× faster decoding inference time. The in-
creased encoding time directly contributes to this substan-
tial improvement in decoding efficiency. Notably, in many
practical scenarios where an image is encoded once but de-
coded multiple times by numerous users, the imbalance be-
tween encoding and decoding usage makes the increased
encoding time an acceptable trade-off for improved com-
pression ratios. This aligns with common practices in tra-
ditional codecs where complex encoders are routinely em-
ployed to enhance compression performance.

Furthermore, as illustrated in Figure 4, the majority of
compression ratio gains occur during the early stages of
overfitting, allowing for flexible trade-offs between encod-
ing time and compression ratios. This characteristic enables
practical optimization based on specific application require-
ments.
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