
Flexible Group Count Enables Hassle-Free Structured Pruning

Supplementary Material

7. Limitation and broader impact
Although our evaluation game throughout the experiment
and ablation study is objectively beyond most, if not all,
available structured pruning literature, our findings on us-
ing dynamic group counts on GKP to optimize the perfor-
mance gain from the improved pruning freedom are still
mainly limited to the image classification task on the be-
nign dataset. This limitation is a result of the CNN pruning
community collectively opting for image classification tasks
as a proxy for compression effectiveness, and thus, it is be-
yond our ability to adopt most, not to mention all featured
methods, to a different task. That being said, we do extend
our own proposed method — LeanFlex-GKP — to the dif-
fusion task, which is one of the other major use cases that
rely on CNN backbones.

Further, given that GKP is a recently developed and rec-
ognized pruning granularity that has a lack of exposure in
the ML efficiency field, a more comprehensive study of
LeanFlex-GKP on various task domains can be investigated
for future work. In terms of broader impacts, we are aware
that the proposed research is often utilized in an on-device
fashion, and we’d like to caution our users to carefully eval-
uate the adopted technology against the intended use before
mass deployment, especially under a high-stake scenario.

8. Extended related works
Structured pruning. As discussed in Section 2.1 and il-
lustrated Figure 1, structured pruning is a family of pruning
methods that removes model components in groups, where
the majority of methods are capable of delivering densely
structured pruned models for immediate efficiency bene-
fits. Below, we briefly introduce some important aspects
of structured pruning and refer our reader to comprehensive
survey work like Blalock et al. [2] and He and Xiao [17] for
details.

Prior papers on densely structured pruning have car-
ried out such pruning operations on (or determined by)
filters, channels, layers, inputs, or combinations of the
above [1, 3, 5, 6, 6–8, 10–12, 14, 15, 18–20, 23, 28, 28–
33, 36, 37, 47–51, 54, 57, 59, 60, 64, 64]. Scholars often
refer to this as the “granularity” or simply the “type” of
a pruning method. Among them, filter/channel pruning is
considered the most popular structured pruning granularity
as it can gain immediate efficiency benefits after channel
removal.

Outside the pruning granularity, the pipeline of a prun-
ing method plays another major role in deciding which
method to adopt. Pruning operations can conducted from-

scratch (e.g., OTOv2 by Chen et al. [3]), during training
(e.g., Roy et al. [44]), or post-train (e.g., FPGM by He et al.
[20]). Many pruning methods also require intervention (or
access to information) at an earlier stage, then conduct ac-
tual pruning at a later stage. E.g., DMCP by Guo et al.
[14] further adjusts weights of a pruned model before prun-
ing, and TMI-GKP by Zhong et al. [60] requires access
to the model training checkpoint to guide its pruning op-
erations. Most pruning methods follow a train - prune -

fine-tune/retrain pipeline, as the trained model provides a
good starting and reference point for pruning and evaluat-
ing. However, this pipeline suffers the natural drawback of
having to both train the unpruned baseline model and fine-
tune/retrain the pruned model, where from-scratch methods
or fine-tuning free methods like Narshana et al. [39] may
effectively avoid such compute cost, though often with a
trade-off of delivering lower accuracy retention.

Further, the scheduling of a pruning method drastically
affects the efficiency and adaptability of a method. Most
pruning methods can be roughly categorized into one-shot
or iterative pruning. The former prunes all redundant model
components all at once; the latter, as its name implies, con-
ducts pruning gradually with weight updates between two
pruning operations. One-shot pruning is often considered
easier to deploy and more efficient to run, though iterative
pruning is generally more performant on accuracy retention.

On the note of adaptability, the data dependency of a
pruning method potentially plays another vital role in the
adaptability of a method. With data-agnostic pruning meth-
ods do not require data access to determine what to prune,
and data-dependent or data-informed methods do the oppo-
site.

Other implementations details such as hard or soft

pruning (whether the pruned components are entirely re-
moved from the model to yield a pruned model with reduced
dimension, or just zero-masked), reduction control and es-
timation (if one can reliably control and predict the mem-
ory and compute requirements of a pruned model before
conducting the actual pruning), and hyperparameter tuning
pressure (whether the method has a lot of hyperparameters
to adjust, or if the method has a way to tune them auto-
matically, like AAP by Zhao et al. [59] and AMC by He
et al. [19]) also have their influences, especially on the user-
friendliness aspect of a method.

Our method is a one-shot, post-train, data-agnostic,
hard-pruning method with only one tunable hyperparameter
(which is primarily determined by the layer dimension; see
Appendix 10.2 for details). Yet, one may adjust the pruning
rate setting of our method to reliably control and predict the



MACs and Params reduction of the pruned model (see the
relation between pruning rate and pruned model size in ex-
periments like Table 19 and 21). These characteristics put
our method on top of the efficiency, adaptability, and user-
friendliness lists over many other pruning methods under
the context of densely structured CNN pruning.

Grouped kernel pruning. Grouped kernel pruning
(GKP) is a special type of densely structured pruning gran-
ularity that is able to offer finer pruning freedom than filter
or channel pruning methods. As demonstrated in Figure 2,
GKP is, in essence, a combination of pruning a stack of
kernels under the same filter group (a.k.a. grouped kernels)
and reconstructing the remaining model to a grouped con-
volution format [24]. Granted, grouped convolution itself is
proposed with efficiency motivations, and we may say that
this granularity — outside a pruning context — naturally
exists with the debut of AlexNet [26].

The combination of densely structured pruning with
grouped convolution is first introduced in Yu et al. [55], but
the method, unfortunately, did not attract significant atten-
tion from the community. One potential reason for this is
due to the high complexity of its pruning procedure: fea-
ture maps-dependent iterative pruning plus fine-tuning with
knowledge distillation. Other reasons include not perform-
ing a comprehensive ablation study to track its contribu-
tions, as well as a lack of comparable experiments to mod-
ern pruning arts. Another work, Guo et al. [13], also ex-
plores structured pruning with grouped convolution, but it
still introduces sparsity to its pruned model with its zero-
padded implementation to support unequal group sizes.

A refined procedure at the intersection of densely struc-
tured pruning and grouped convolution is brought by Zhong
et al. [60] as TMI-GKP, where they stipulate a three-stage
procedure consisting of 1) filter grouping, 2) grouped ker-
nel pruning, and 3) grouped convolution reconstruction – as
well as coining it with the term “grouped kernel pruning.”

The GKP procedure and nomenclature have since been
adopted by TMI-GKP’s concurrent, related, and follow-up
works like He and Xiao [17], Park et al. [42], Zhang et al.
[58].



9. Extended proposed method
9.1. Formal definition of L2 & geometric median-based grouped kernel pruning
To better illustrate the formal definition of our purposed method, let W be the set containing all filters f in a certain convo-
lutional layer of a CNN:

W ⇥ {f1, f2, . . . , fn},
where n is the number of filters in that layer, a.k.a. the out channels. The filter grouping procedure is then applied on

such f1 to fn.
The numbers of desire grouped filters (a.k.a. the Conv2d(groups) or group count) are chosen from candidate group

count list (see Table 5), where one of them is ultimately selected after the post-prune group count evaluation (see Section 4.4).
For simplicity, let’s assume that the current candidate group count is m (the number of filters n must be divisible by m

because in our implementation every group in the same layer has exactly the same number of filters to be able to reconstruct
to a grouped convolution format), and let G be the set containing all filter groups g after KPP-aware filter clustering is applied
on all the filters in W (Figure 5):

W ⇥ {f1, f2, . . . , fn} KPP-aware Filter Grouping
���������������� G ⇥ {g1, g2, . . . , gm},

where gi is the ith grouped filters in G.
Suppose there are � number of kernels in a filter (a.k.a. in channel), we shall have � grouped kernels (gk) in each

filter group g:

g ⇥ {gk1, gk2, . . . , gk�}.
We then compute the geometric median ⌧ of each filter group g among all grouped kernels (gk) in g:

G ⇥ {g1, g2, . . . , gm} Compute Geometric Median
����������������� {⌧1, ⌧2, . . . , ⌧m}.

After we get each group’s geometric median, we start to prune grouped kernels gk in each filer group g. Inside each filter
group g, we compute the L2-norm of each grouped kernels gk in g and add them to list Q:

g ⇥ {gk1, gk2, . . . , gk�} Compute L2-Norm
������������ Q ⇥ {q1, q2, . . . , q�},where qi = ΩgkiΩ2.

Also, we compute the euclidean distance of each grouped kernels gk to its group’s geometric median ⌧ and add them to
list D:

g ⇥ {gk1, gk2, . . . , gk�} gk’s Distance to ⌧

����������� D ⇥ {d1, d2, . . . , d�},where di = Euclidean(gki, ⌧).
Then we do Min-Max Normalization on list Q and D separately:

Q ⇥ {q1, q2, . . . , q�} Min-Max Normalization
��������������� Q

¨

⇥ {q¨

1, q
¨

2, . . . , q
¨

�},
such that

q

¨

i =
qi � min(Q)

max(Q) � min(Q) .
Using the same equation above, we conduct the same Min-Max Normalization upon list D:

D ⇥ {d1, d2, . . . , d�} Min-Max Normalization
��������������� D

¨

⇥ {d¨

1, d
¨

2, . . . , d
¨

�}.
We then calculate the importance score I of each grouped kernels (gk) (Figure 6):

g ⇥ {gk1, gk2, . . . , gk�} calculate importance score
���������������� I ⇥ {I1, I2, . . . , I�},where Ii = q

¨

i + d

¨

i.



Finally, assume that the pruning rate (ratio of grouped kernels to be pruned) is pr, we preserve 1 � pr ratio of grouped
kernels gk in group g with higher importance score I . So with � number of gk and preserve rate 1 � pr, we will have
�(1 � pr) numbers of preserved grouped kernels gk after pruning:

g ⇥ {gk1, gk2, . . . , gk�}Õ ““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““—““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““œ
� numbers of gk

pruning
����� g

ò ⇥ {gkò1 , gkò2 , . . . , gkò�}Õ ““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““—““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““œ
�(1 � pr) numbers of gk

.

So in general, for each candidate group count m, we will have GKP result Gò:

W ⇥ {f1, f2, . . . , fn} �� G ⇥ {g1, g2, . . . , gm}Õ “““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““—“““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““œ
filter grouping stage

�� G
ò ⇥ {gò1 , gò2 , . . . , gòm}Õ ““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““—“““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““œ

gk pruning stage

.

For demonstration, suppose we have three candidate group count [m1,m2,m3], we will have three pruning results
G

ò
1 , G

ò
2 , G

ò
3 . Then we evaluate these three pruning results via post-prune group count evaluation (Section 4.4). Finally,

based on post-prune group count evaluation, the optimal pruning result will be transformed into densely structured group
convolution layer.

9.2. Formal definition of post-prune group count evaluation
For simplicity, let’s assume that the current candidate group count is m (m number of groups in a layer), and suppose there
are � number of kernels in a filter. After grouped kernel pruning (Section 9.1), we can get pruned layer:

G
ò ⇥ {gò1 , gò2 , . . . , gòm}.

Then we may compute the preserved grouped kernels geometric median ⌧
ò for each pruned group g

ò:

G
ò ⇥ {gò1 , gò2 , . . . , gòm} Compute Geometric Median

����������������� {⌧ò1 , ⌧ò2 , . . . , ⌧òm},
where ⌧

ò
i is the geometric median of preserved gk (different from Section 4.3, which are the geometric median for all

gk including those being pruned). Let ∂ ∂ be an operator that calculate cardinality in terms of grouped kernels. For group g
ò
i

with geometric median ⌧
ò
i :

A(gòi ) = 1∂gò
i
∂ =
gk"gò

i

Euclidean(gk, ⌧òi ),
where A(gòi ) is the average euclidean distance between gk of ith group and its geometric median (intra-group similarity).

B(gòi ) = 1∂Gò � g
ò
i
∂ =
gk"Gò�gò

i

Euclidean(gk, ⌧òi ),
where B(gòi ) is the average euclidean distance between i

th group’s geometric median and all gk that are not in i
th

group (inter-group distinctions). Now, we may calculate the group count evaluation score S upon the pruning result of each
candidate group count (see Figure 7) as:

S = �

m

=
i=1

B(gòi ) �A(gòi ),where � = �

m
. (1)

Since we have candidate group count list with different group counts (see Table 5), during post-prune group count evalu-

ation, each group count will provide a unique score S using Equation (1).
For demonstration, following the example in the last paragraph of Section 9.1, suppose we have three candidate group

counts [m1,m2,m3], we will have three pruning results Gò
1 , G

ò
2 , G

ò
3 . Using Equation (1), we will have three group count

evaluation scores S1, S2, S3. So we only need to choose the pruning result Gò among G
ò
1 , G

ò
2 , G

ò
3 with largest S value in

S1, S2, S3.
A large value of S implies a pruned layer with better intra-group similarity and inter-group distinctions. Utilizing this

S evaluation metric, we are able to leverage the joint optimization effect of grouping and pruning on different group count
settings and, therefore, obtain a better pruning result for the layer-in-question.



9.3. Pseudocode for the proposed method

Algorithm 1 General Procedure of LeanFlex-GKP on a Single Convolutional Layer
Input: Candidate Group Count Queue Q V candidate Conv2d(groups) like [2,4,8]
Initialize: Empty List P V storage of pruning strategies w.r.t. each group count candidate
for q " Q do: V looping though all group count candidates

Conduct k-Means++ clustering on filters to get q amount of centers
CS ⇥ q candidate sequences of centers generated by multiple restarts V see Figure 5
Initialize: Empty List FG V to store filter grouping results
for s " CS do:

Get filter grouping result fgs for the s center sequence, as illustrated in Figure 5(c)
FG.append(fgs)

Determine the optimal filter grouping result fgopt with least intra-group distance (Figure 5)
for filter group g " fgopt do: V Prune grouped kernels inside each filter group

g
q

pruned ⇥ Prune g w.r.t. the L2 & geometric median-based method stipulated in Figure 6

P.append(g
q

pruned)

Determine the best gopt " P according to Section 9.2 V illustrated in Figure 7
return Pruned convolutional layer gopt and its corresponding group count qopt



10. Ablation studies
In company with our main experiment results showcased in Section 5 and Appendix 11, we provide ablation studies of our
proposed LeanFlex-GKP method from different perspective-of-interests,

10.1. On different procedural recipes
In this section, we conduct ablation studies on our proposed methods by evaluating the contribution of our proposed al-
gorithmic components. We utilized BasicBlock ResNets [16] on the CIFAR10 dataset [25] for their lightweightness. All
comparisons are done so with the pruning rate being 43.75% (meaning 43.75% of the original model is removed; please refer
to the LeanFlex-GKP reports in Table 21 for the exact reduction status).

In Table 2, we try to investigate the influence of different grouping approaches under our Flexible Group Count pipeline,
where our proposed filter grouping method, KPP-aware filter grouping (Section 4.2) has the optimal empirical results.

Table 2. Ablation Study on Different Filter Grouping Approaches

Method Name ResNet32 ResNet56 ResNet110
FGC + RandomGroup + GM&L2 92.81 93.72 94.67
FGC + No Restart KPP-aware Filter Grouping + GM&L2 93.04 93.76 94.61
FGC + Equal-size KPP + GM&L2 92.52 93.77 -
FGC + KPP-aware Filter Grouping + GM&L2 (ours) 93.01 94.00 94.92

In Table 3, we try to evaluate the validity of our proposed L2 & geometric median-based grouped kernel pruning
method in comparison with other pruning strategies (while under our flexible group count pipeline). It is observed that our
flexible group count pipeline is best working with the GM&L2 grouped kernel pruning method we proposed in Section 4.3.

Table 3. Ablation Study on Different Grouped Kernel Pruning Approaches

Method Name ResNet32 ResNet56
FGC + KPP-aware Filter Grouping + TMI (Greedy) 92.84 93.58
FGC + KPP-aware Filter Grouping + Distance to GM 92.92 93.73
FGC + KPP-aware Filter Grouping + L2Norm 92.99 93.61
FGC + KPP-aware Filter Grouping + GM&L2 (ours) 93.01 94.00

In Table 4, we showcase the power of adding flexible group count into our GKP procedure as stipulated in post-prune
group count evaluation (Section 4.4), it is observed that the Conv2d(groups) decided by our evaluation design has
better performance than other constant or dynamic group count settings. Specifically, the “Eight Groups” strategy is utilized
in TMI-GKP [60], and the “Random Groups Reassign” means to randomly re-distribute the optimal group counts (deemed
by our post-prune group count evaluation method) across different layers; granted such reassignment is legal in term of layer
dimensions.

Table 4. Ablation Study on Different Group Count Settings

Method Name ResNet32 ResNet56 ResNet110
Eight Groups (TMI’s setting) + KPP-aware Filter Grouping + GM&L2 92.86 93.82 94.72
Max Groups + KPP-aware Filter Grouping + GM&L2 92.88 93.82 94.72
Random Groups Reassign + KPP-aware Filter Grouping + GM&L2 92.75 93.89 94.43
FGC + KPP-aware Filter Grouping + GM&L2 (ours) 93.01 94.00 94.92

10.2. On different hyperparameter settings
We illustrate the hyperparameter settings for all reported LeanFlex-GKP experiments as Table 5. The only tunable hyperpa-
rameter for LeanFlex-GKP is Candidate Group Counts, i.e., a set of Conv2D(groups) setting considered. Granted most
CNN architectures have different dimensions across their convolutional layer, this setting should be adjusted subject to sub-
ject to the layer’s out channels. In our case, we basically checkout what is the largest Conv2D(groups) applicable to
a particular convolutional layer, then generate the rest of group count candidates by reducing it by half.



Table 5. Hyperparameter Settings for LeanFlex-GKP’s Reported Results. PR stands for pruning rate, Budget represents the train - fine-tune

budget in terms of number of epochs, BS implies batch sizes, and Candidate Group Counts indicate the different Conv2D(groups)
settings considered. We provide settings in torch style code snippets

Model Dataset PR Budget BS Optimizer & Learning Rate Candidate Group Counts
ResNet20

CIFAR10 43.75% 300 - 300 64 SGD(lr=0.01, momentum=0.9, weight decay=5e-4)
StepLR(step size=100, gamma=0.1)

S2
ResNet32 S1
ResNet56 S2
ResNet110 S1

ResNet32
CIFAR10 62.5% SGD(lr=0.01, momentum=0.9, weight decay=5e-4)

StepLR(step size=100, gamma=0.1)

S1
ResNet56 300 - 300 64 S2
ResNet110 S1

ResNet56 CIFAR100 43.75% 200-300 64 SGD(lr=0.01, momentum=0.9, weight decay=5e-4)
StepLR(step size=100, gamma=0.1)

S2
ResNet110 S2

ResNet56 Tiny-ImageNet 37.5% 100-300 64
SGD(lr=0.01, momentum=0.9, weight decay=5e-4)
MultiStepLR(milestones=[80, 90], gamma=0.1)

S2

ResNet101 Tiny-ImageNet 43.75% 300-20 256
SGD(lr=0.1, momentum=0.9, weight decay=1e-4)

StepLR(step size=5, gamma=0.1)
[8,16,32]x1

[8,16,32,64]x3

ResNet50 ImageNet 33.00% Pretrained-100 256
SGD(lr=0.01, momentum=0.9, weight decay=1e-4)

StepLR(step size=30, gamma=0.1)
All layers [4,8,16,32]

VGG11 CIFAR10 43.75% 300-300 64
SGD(lr=0.01, momentum=0.9, weight decay=5e-4)

StepLR(step size=100, gamma=0.1)

[8,16,32]x1
[16,32,64]x2
[32,64,128]x4

VGG13 CIFAR10 43.75% 300-300 64
SGD(lr=0.01, momentum=0.9, weight decay=5e-4)

StepLR(step size=100, gamma=0.1)

[4,8,16]x2
[8,16,32]x2
[16,32,64]x2
[32,64,128]x3

VGG16 CIFAR10 43.75% 300-300 64
SGD(lr=0.01, momentum=0.9, weight decay=5e-4)

StepLR(step size=100, gamma=0.1)

[4,8,16]x2
[8,16,32]x3
[16,32,64]x3
[32,64,128]x4

DenseNet40 CIFAR10
33.33%
50.00%
66.67%

Pretrained-300 64
SGD(lr=0.01, momentum=0.9, weight decay=1e-4)
MultiStepLR(milestones=[150, 225], gamma=0.1)

[4,6,12]
[7,8,12,14,21,24]

[8,12,13,24]

DenseNet40 CIFAR10 52.00% 400-300 64
SGD(lr=0.01, momentum=0.9, weight decay=1e-4)
MultiStepLR(milestones=[150, 225], gamma=0.1)

[4,6,12]
[7,8,12,14,21,24]

[8,12,13,24]

MobileNetV2 CIFAR10 40.00% 300-300 64
SGD(lr=0.001, momentum=0.9, weight decay=5e-4)

StepLR(step size=100, gamma=0.1)

[2,4,8]
[4,8,12,24]
[4,8,16]

[8,16,32,64]
[8,16,32]

WideResNet-28-10 CIFAR10 50.00% 200-300 128
SGD(lr=0.01, momentum=0.9, weight decay=5e-4)

StepLR(step size=100, gamma=0.1)
[8,16,32]

Note in Table 5 above we have S1 and S2 as candidate group count settings for BasicBlock ResNets
on CIFAR10. In such cases, S1 stands for [4,8,16],[8,16,32],[16,32,64], where S2 stands for
[8,16],[8,16,32],[8,16,32,64]. Table 6 reports the evaluation results when the models are grouped/pruned
according to different candidate group count settings. Under most evaluated setups, our method’s performance is similar
between the two settings.

Table 6. Basicblock ResNets on CIFAR10 when pruned according to setting S1 and S2.

Model S1: PR = 43.75% S2: PR = 43.75% S1: PR = 62.50% S2: PR = 62.50%

ResNet20 92.14 92.49 - -
ResNet32 93.01 92.96 92.40 92.07
ResNet56 93.93 94.00 93.32 93.54
ResNet110 94.92 94.54 94.35 94.34

10.3. Pruning procedure speedup

We additionally investigate the wall-clock runtime of our proposed method at Table 7 regarding its pruning procedure (time
required to obtain a ready-to-fine-tune pruned model in grouped convolution format).



Table 7. Wall-clock Runtime Comparison between LeanFlex-GKP (Ours) and TMI-GKP [60], LRF [23]’s Pruning Procedures. N/A means
no result.

Method ResNet32 ResNet56 ResNet110 WideResNet-28-10
LRF [23] 40m 37s 1h 49m 31s 3h 6m 9s N/A
TMI-GKP [60] 1h 20m 10s 2h 36m 22s 5h 30m 18s over 240 hours
LeanFlex-GKP (ours) 10m 56s 21m 32s 44m 15s 3h 10m 28s

Our method provides a massive speed advantage over TMI-GKP while both being post-train, one-shot, and data-agnostic.

10.4. Inference speedup: standard convolution v.s. grouped convolution

Table 8. Inference speed comparison between a standard convolution operator and a GKP convolution operator. Input size set as (64,
in channel, 32, 32).

Operator Forward Macs Params

Unpruned Standard Conv2d 2.50 ms 118.380 G 2.359 M
GKP-pruned Conv2d (G=2, PR=0.5) 1.61 ms 59.190 G 1.180 M
GKP-pruned Conv2d (G=2, PR=0.625) 1.28 ms 44.393 G 0.885 M
GKP-pruned Conv2d (G=4, PR=0.5) 1.82 ms 59.190 G 1.180 M
GKP-pruned Conv2d (G=4, PR=0.625) 1.46 ms 44.393 G 0.885 M

We must emphasize that while grouped convolution has many hardware-friendly properties such as being dense and struc-
tured, in practice, not all shapes of group convolution operations provide the same amount of speedup — some shapes
can even be slower. Ever since the development of torch 2.0 and torch.compile, we have observed a significant
inference speed improvement on grouped convolution (previously, all shapes of grouped convolution were strictly slower).
However, many aspects of this operation are still under-optimized without proper kernel implementations. There are, of
course, many more inference frameworks than the vanilla torch, and they may exhibit different shape preferences and prop-
erties. We leave such systematic aspects of grouped convolution for future works.

11. Extended experiment results
Our proposed method, LeanFlex-GKP, follows the classic train - prune - fine-tune pipeline under a data-agnostic setting.
This implies all model components are pruned all at once prior to fine-tuning, without having access to the training or fine-
tuning data. Our method is implemented in a hard pruning fashion, which means the pruned model for fine-tuning is already
compressed. We refer our readers to Table 5 for specific experiment details such as epoch budget and hyperparameter settings,
as we have thereat documented detailed experiment settings for all 21 reported results of LeanFlex-GKP.

As introduced in Section 5, we evaluate the effectiveness of our method against many other densely structured
pruning methods on ResNet20/32/56/110 with the BasicBlock, ResNet50/101 with the BottleNeck implementation [16],
VGG11/13/16 [46], DenseNet40 [22], MobileNetV2 [45], and WideResNet [56]. The datasets we used include CIFAR10/100
[25], Tiny-ImageNet [52], and ImageNet-1k [4].

11.1. Compared methods
Our methods is compared against 25 different pruning methods as illustrated in Table 9. Where notions like C/F/GK/K/L in
the Granularity column respectively represent Channel/Filter/Grouped Kernel/Kernel/Layer pruning. Procedure indicates
if the pruned model is generated iteratively (requires weight update between conducting the first pruning act and having the
fully pruned model) or in a one-shot manner (pruned all at once without weight update in between). Zero-Masked? column
investigates if a model is hard pruned (no zero-masked weight) before fine-tuning.



Table 9. Overview of Compered Methods.

Method Venue Granularity Procedure Zero-Masked?
CC [30] CVPR C One-shot N
DepGraph [8] CVPR C One-shot N
DHP [29] ECCV F Iterative (from-scratch) Y
FPGM [20] CVPR F Iterative Y
GAL [33] CVPR F Iterative Y
HRank [32] CVPR F Iterative Y
L1Norm [28] ICLR F One-shot N
LRF [23] AAAI C One-shot N
NPPM [11] CVPR C One-shot N
OTOv2 [3] ICLR F Iterative (from-scratch) Y
SFP [18] IJCAI F Iterative Y
ThiNet [37] ICCV F One-shot -
TMI-GKP [60] ICLR GK One-shot N
LeanFlex-GKP (Ours) - GK One-shot N

AAP [59] AISTATS F Iterative -
AMC [19] ECCV C - N
ChipNet [48] ICLR C Iterative N
GDP [15] ICCV C One-shot -
DOP [54] BMVC C One-shot Y
KPGP [57] APIN GK One-shot N
WM [64] NeurIPS C Iterative -
Layer-wise Proxy [7] IEEE ICIP L One-shot N

DCP [64] NeurIPS C Iterative -
DMC [10] CVPR C Iterative -
MDP [12] CVPR C - -
SCOP [47] NeurIPS F - -



11.2. Accuracy gap between competitive methods and LeanFlex-GKP

Table 10. The accuracy gap between LeanFlex-GKP and several competitive methods: TMI-GKP [60], LRF [23], CC [30], NPPM [11],
SFP [18]

Method Setting CC TMI NPPM LRF SFP
ResNet56 TinyImageNet +4.71 +0.15 +5.18 -0.28 +2.02
ResNet101 TinyImageNet +3.61 +0.66 +0.40
ResNet50 Imagenet +0.11 +17.12
VGG11 +0.31
VGG13 +0.06
VGG16 +0.01 0.08
DenseNet40 (pr=0.33) +0.24
DenseNet40 (pr=0.50) +0.35
DenseNet40 (pr=0.52) +0.50
DenseNet40 (pr=0.67) +0.35
ResNet56 CIFAR100 +0.68 +0.32 +0.54 +2.31
ResNet110 CIFAR100 +0.42 +0.63 +1.25 +0.05
ResNet32 (pr=0.625) +0.01 +0.48 -0.39 +2.12
ResNet56 (pr=0.625) -0.03 +0.47 +1.30
ResNet110 (pr=0.625) +0.06 +0.42 +0.25 +1.37
ResNet20 (pr=0.4375) +0.69 +0.31 +0.63 +0.26 +1.34
ResNet32 (pr=0.4375) +0.00 +0.02 -0.12 -0.03 +1.07
ResNet56 (pr=0.4375) -0.04 +0.05 +0.45 +0.07 +0.85
ResNet110 (pr=0.4375) +0.61 +0.02 +0.76 +0.43 +0.48

11.3. Margin of error
We additionally provide the margin of error of Table 1.

Table 11. Performance of LeanFlex-GKP for multiple runs of fine-tuning.

Method s- Dataset Baseline Acc Reported Avg Acc (±Margin) Pruning Rate
VGG16 - CIFAR10 93.94 94.15 94.06 (±0.09) 0.4375
ResNet32 - CIFAR10 92.80 92.40 92.31 (±0.09) 0.625
ResNet110 - CIFAR10 94.26 94.35 94.26 (±0.09) 0.625
MobileNetV2 - CIFAR10 93.87 94.36 94.21 (±0.15) 0.5
ResNet56 - CIFAR100 71.53 72.11 72.24 (±0.21) 0.4375
ResNet110 - CIFAR100 73.20 73.63 73.45 (±0.17) 0.4375
ResNet56 - TinyImagenet 56.13 55.67 55.68 (±0.14) 0.375

11.4. Stable Diffusion Conv2d Pruning Result
In addition to image classification tasks, we also evaluate LeanFlex-GKP’s performance on the image generation (diffusion)
task. Specifically, we apply LeanFlex-GKP to the UNet component of SDXL-Base-1.0 [43]. We exclusively fine-tuned the
LeanFlex-GKP pruned SDXL-Base-1.0 while freezing all other non-UNet components for 30 epochs on the MSCOCO-2014-
5k [35], then measured its output with 20 GPT-4 [40] generated prompts via the CLIP score [21]. Our method demonstrates
decent — beyond unpruned — performance with 50% pruned (Table 12).

Table 12. SDXL-Base-1.0 w/ UNet pruned by LeanFlex-GKP

Model Max CLIP Score Avg CLIP Score
Baseline (UNet unpruned) 30.54 27.99
LeanFlex-GKP (PR = 50%) 36.98 (� 6.44) 28.60 (� 0.61)



11.5. Full experiment results

The terms and notations utilized in the following experiment results follow the definitions defined in Section 5: DA represents
if the method is data-agnostic (pruning can be done without access to data), IP indicates if a method is considered an iterative
pruning method (utilizing a train-prune cycle), and RB reports recovery budget (in terms of epochs). All other reported
criteria are in terms of %. BA and Pruned respectively report the unpruned (baseline) accuracy and the pruned accuracy.
Methods marked with ò are drawn from their original or (third-party) replicated publication; the rest are replicated by us to
ensure a fair comparison. Generally speaking, a method that is DA ≥, IP 7, and demands a smaller RB is likely to be more
user-friendly.

Table 13. Results of ResNet50 Model on ImageNet-1K Dataset. Results in bold red indicate being the second best among comparisons.

Method DA IP RB BA Pruned �Acc ⇤ MACs ⇤ Params
ResNet50 on ImageNet-1K MACs ⌅ 4122.828M Params ⌅ 25.557M

SFP* [18] 7 ≥ 100 76.13 58.50 ⇤ 17.63 36.08 32.31
FPGM* [20] 7 ≥ 100 76.13 75.04 ⇤ 1.09 35.93 28.36
TMI-GKP* [60] ≥ 7 100 76.15 75.53 ⇤ 0.62 33.21 33.74
ThiNet* [37] 7 ≥ 100 72.88 72.04 ⇤ 0.84 36.70 -
OTOv2*
(post-train) [3] 7 ≥ 120 76.13 75.38 ⇤ 0.75 37.70 26.58

DOP* [54] 7 7 120 76.47 74.29 ⇤ 2.18 60.00 -
Layer-wise Proxy*
[7] 7 7 - 76.14 75.0 ⇤ 1.14 5.50 -

KPGP* [57] ≥ 7 76.15 75.50 ⇤ 0.65 33.70 33.20
LeanFlex-GKP (ours) ≥ 7 100 76.13 75.62 ⇤ 0.51 33.06 30.34

Table 14. Results of ResNet56/101 Model on Tiny-ImageNet Dataset

Method DA IP RB BA Pruned �Acc ⇤ MACs ⇤ Params
ResNet56 on Tiny-ImageNet MACs ⌅ 506.254M Params ⌅ 0.865M

TMI-GKP [60] ≥ 7 300 56.13 55.52 ⇤ 0.61 37.05 36.76
L1Norm-A [28] ≥ 7 300 56.13 55.41 ⇤ 0.72 35.51 32.14
L1Norm-B [28] ≥ 7 300 56.13 55.21 ⇤ 0.92 36.43 41.04
SFP [18] 7 ≥ 300 56.13 53.65 ⇤ 2.48 33.96 35.38
FPGM [20] 7 ≥ 300 56.13 54.14 ⇤ 1.99 33.53 34.68
HRank [32] 7 ≥ 300 56.13 54.16 ⇤ 1.97 37.39 30.98
DHP [29] 7 ≥ 100 56.13 45.73 ⇤ 10.40 36.42 -
NPPM [11] 7 7 300 56.13 50.49 ⇤ 5.64 36.42 17.92
LRF [23] 7 7 300 56.13 55.95 ⇤ 0.18 35.90 34.68
CC [30] 7 7 300 56.13 50.96 ⇤ 5.17 22.18 14.34
LeanFlex-GKP (ours) ≥ 7 300 56.13 55.67 ⇤ 0.46 37.05 36.76

ResNet101 on Tiny-ImageNet MACs ⌅ 10081.092M Params ⌅ 42.902M

TMI-GKP [60] ≥ 7 20 65.71 65.05 ⇤ 0.66 43.25 43.53
SR-GKP [61] ≥ 7 20 65.51 67.21 � 1.70 43.25 43.53
SFP [18] 7 ≥ 20 65.51 68.06 � 2.55 43.56 42.43
FPGM [20] 7 ≥ 20 65.51 66.95 � 1.44 43.13 43.84
LeanFlex-GKP (ours) ≥ 7 20 65.51 68.46 � 2.95 43.25 43.53



Table 15. Results of MobileNetV2 Model on CIFAR10 Dataset

Method DA IP RB BA Pruned �Acc ⇤ MACs ⇤ Params
MobileNetV2 on CIFAR10 MACs ⌅ 98.768M Params ⌅ 2.383M

DCP* [64] 7 - 400 94.47 94.69 � 0.22 26.00 -
WM* [64] 7 - 400 94.47 94.17 ⇤ 0.30 26.00 -
MDP* [12] 7 - - 95.02 95.14 � 0.12 28.71 -
ChipNet* [48] 7 ≥ 300 93.55 92.58 ⇤ 0.97 20.00 -
SCOP* [47] 7 - 400 94.48 94.24 ⇤ 0.24 49.30 -
GDP* [15] 7 - 350 94.89 95.15 � 0.26 46.22 -
DMC* [10] 7 - 160 94.23 94.49 � 0.26 40.00 -
LeanFlex-GKP (ours) ≥ 7 300 93.87 94.36 � 0.49 38.32 36.00

Table 16. Results of VGG11/13/16 Model on CIFAR10 Dataset

Method DA IP RB BA Pruned �Acc ⇤ MACs ⇤ Params
VGG11 on CIFAR10 MACs ⌅ 153.5M Params ⌅ 9.3M

CC [30] 7 7 300 92.34 92.24 ⇤ 0.10 42.32 56.77
L1Norm [28] ≥ 7 300 92.34 91.77 ⇤ 0.57 41.44 35.01
LeanFlex-GKP (ours) ≥ 7 300 92.34 92.55 � 0.21 43.41 43.68

VGG13 on CIFAR10 MACs ⌅ 229.4M Params ⌅ 9.4M

CC [30] 7 7 300 93.95 93.97 � 0.02 42.56 54.11
L1Norm [28] ≥ 7 300 93.95 93.26 ⇤ 0.69 42.95 35.09
LeanFlex-GKP (ours) ≥ 7 300 93.95 94.03 � 0.08 43.58 43.68

VGG16 on CIFAR10 MACs ⌅ 313.4M Params ⌅ 14.7M

CC [30] 7 7 300 93.94 94.14 � 0.20 43.18 -
GAL [34] 7 ≥ 300 93.94 91.29 ⇤ 2.65 35.16 47.40
HRank [32] 7 ≥ 300 93.94 93.57 ⇤ 0.37 32.28 40.82
L1Norm [28] ≥ 7 300 93.94 92.88 ⇤ 1.06 42.71 37.85
KPGP* [57] ≥ 7 300 94.27 94.17 ⇤ 0.10 43.15 43.59
TMI-GKP [60] ≥ 7 300 93.94 94.07 � 0.13 43.15 43.59
LeanFlex-GKP (ours) ≥ 7 300 93.94 94.15 � 0.21 43.15 43.59

Table 17. Results of DenseNet40 on CIFAR10 Dataset

Method DA IP RB BA Pruned �Acc ⇤ MACs ⇤ Params
DenseNet40 on CIFAR10 MACs ⌅ 282.2M Params ⌅ 1.5M

GAL* [34] 7 ≥ - 94.81 94.61 ⇤ 0.20 35.30 35.60
HRank* [32] 7 ≥ - 94.81 94.24 ⇤ 0.57 41.00 36.50
CC (pr=0.33) [30] 7 7 300 94.81 94.75 ⇤ 0.06 32.97 51.42
CC (pr=0.50) [30] 7 7 300 94.81 94.58 ⇤ 0.23 49.85 64.48
CC (pr=0.67) [30] 7 7 300 94.81 94.22 ⇤ 0.59 66.55 75.88
LeanFlex-GKP (pr=0.33) (ours) ≥ 7 300 94.81 94.99 � 0.18 32.43 32.58
LeanFlex-GKP (pr=0.50) (ours) ≥ 7 300 94.81 94.93 � 0.12 48.64 48.82
LeanFlex-GKP (pr=0.67) (ours) ≥ 7 300 94.81 94.72 ⇤ 0.09 64.85 65.16

TMI-GKP (pr=0.52) [60] ≥ 7 300 94.66 94.76 � 0.10 52.49 57.22
LeanFlex-GKP (pr=0.52) (ours) ≥ 7 300 94.66 95.11 � 0.45 52.49 57.22

Table 18. Results of WideResNet Model on CIFAR10 Dataset

Method DA IP RB BA Pruned �Acc ⇤ MACs ⇤ Params
WideResNet-28-10 on CIFAR10 MACs ⌅ 5959.4M Params ⌅ 36.5M

LeanFlex-GKP (pr=0.5) (ours) ≥ 7 300 95.09 95.97 � 0.88 49.73 49.62



Table 19. Results of ResNet32/56/110 on CIFAR10 dataset with a pruning rate of ⌅ 62.5%

Method DA IP RB BA Pruned �Acc ⇤ MACs ⇤ Params
ResNet32 on CIFAR10 MACs ⌅ 69.5M Params ⌅ 0.46M

L1Norm-A [28] ≥ 7 300 92.80 89.96 ⇤ 2.84 61.86 65.21
L1Norm-B [28] ≥ 7 300 92.80 90.01 ⇤ 2.79 62.36 67.39
CC [30] 7 7 300 92.80 92.39 ⇤ 0.41 61.29 54.35
SFP [18] 7 ≥ 300 92.80 90.28 ⇤ 2.52 59.74 60.65
FPGM [20] 7 ≥ 300 92.80 91.32 ⇤ 1.48 58.28 59.57
NPPM [11] 7 7 300 92.80 91.92 ⇤ 0.88 61.15 56.52
DHP [29] 7 ≥ 300 92.80 91.73 ⇤ 1.07 50.92 -
LRF [23] 7 7 300 92.80 92.79 ⇤ 0.01 56.95 56.52
LeanFlex-GKP (ours) ≥ 7 300 92.80 92.40 ⇤ 0.40 61.56 61.74

ResNet56 on CIFAR10 MACs ⌅ 126.6M Params ⌅ 0.85M

L1Norm-A [28] ≥ 7 300 93.24 91.79 ⇤ 1.45 62.43 57.64
L1Norm-B [28] ≥ 7 300 93.24 91.56 ⇤ 1.68 62.25 62.35
CC [30] 7 7 300 93.24 93.57 � 0.33 61.54 50.58
SFP [18] 7 ≥ 300 93.24 92.24 ⇤ 1.00 58.61 60.24
FPGM [20] 7 ≥ 300 93.24 92.64 ⇤ 0.60 58.33 59.88
NPPM [11] 7 7 300 93.24 93.07 ⇤ 0.17 58.49 47.05
HRank [32] 7 ≥ 300 93.24 90.63 ⇤ 2.61 60.56 51.88
DHP [29] 7 ≥ 300 93.24 91.66 ⇤ 1.58 60.54 -
AAP* [59] - - - 92.84 92.21 ⇤ 0.63 52.72 -
AMC* [19] - - - 92.80 91.90 ⇤ 0.90 50.00 -
LeanFlex-GKP (ours) ≥ 7 300 93.24 93.54 � 0.30 61.76 61.99

ResNet110 on CIFAR10 MACs ⌅ 255.0M Params ⌅ 1.73M

L1Norm-A [28] ≥ 7 300 94.26 92.50 ⇤ 1.76 61.58 64.16
L1Norm-B [28] ≥ 7 300 94.26 94.04 ⇤ 0.22 60.29 72.25
CC [30] 7 7 300 94.26 94.29 � 0.03 61.34 58.38
SFP [18] 7 ≥ 300 94.26 92.98 ⇤ 1.28 58.70 60.29
FPGM [20] 7 ≥ 300 94.26 94.11 ⇤ 0.15 58.35 60.17
NPPM [11] 7 7 300 94.26 93.93 ⇤ 0.33 60.81 56.87
HRank [32] 7 ≥ 300 94.26 91.94 ⇤ 2.32 61.90 62.49
DHP [29] 7 ≥ 300 94.26 92.73 ⇤ 1.53 74.16 -
LRF [23] 7 7 300 94.26 94.10 ⇤ 0.16 62.94 63.12
ChipNet* [48] 7 ≥ 300 93.98 93.78 ⇤ 0.20 62.41 -
LeanFlex-GKP (ours) ≥ 7 300 94.26 94.35 � 0.09 64.22 62.19



Table 20. Results of ResNet56/110 on CIFAR100 Dataset

Method DA IP RB BA Pruned �Acc ⇤ MACs ⇤ Params
ResNet56 on CIFAR100 MACs ⌅ 126.567M Params ⌅ 0.859M

TMI-GKP [60] ≥ 7 300 70.85 71.11 � 0.26 43.22 43.19
L1Norm-A [28] ≥ 7 300 71.53 68.61 ⇤ 2.92 43.05 40.86
L1Norm-B [28] ≥ 7 300 71.53 68.32 ⇤ 3.21 42.16 48.20
CC [30] 7 7 300 71.53 71.43 ⇤ 0.10 43.52 28.52
SFP [18] 7 ≥ 300 71.53 69.80 ⇤ 1.73 44.29 44.82
FPGM [20] 7 ≥ 300 71.53 69.48 ⇤ 2.05 43.38 43.19
DHP [29] 7 ≥ 300 71.53 68.33 ⇤ 3.2 40.91 29.14
NPPM [11] 7 7 300 71.53 71.57 � 0.04 33.54 13.04
HRank [32] 7 ≥ 300 71.53 69.84 ⇤ 1.69 37.39 31.32
LeanFlex-GKP (ours) ≥ 7 300 71.53 72.11 � 0.58 43.22 43.18

ResNet110 on CIFAR100 MACs ⌅ 255.001M Params ⌅ 1.734M

TMI-GKP [60] ≥ 7 300 72.99 72.79 ⇤ 0.20 43.31 43.37
L1Norm-A [28] ≥ 7 300 73.20 69.85 ⇤ 3.35 43.74 44.41
L1Norm-B [28] ≥ 7 300 73.20 69.32 ⇤ 3.88 42.22 51.96
CC [30] 7 7 300 73.20 73.21 � 0.01 43.43 19.78
NPPM [11] 7 7 300 73.20 72.38 ⇤ 0.82 42.77 18.69
LRF [23] 7 7 300 73.20 73.58 � 0.38 43.38 42.16
LeanFlex-GKP (ours) ≥ 7 300 73.20 73.63 � 0.43 43.31 43.36



Table 21. Results of ResNet20/32/56/110 on CIFAR10 dataset with a pruning rate of ⌅ 43.75%. Results in bold red indicate being the
second best among comparisons.

Method DA IP RB BA Pruned �Acc ⇤ MACs ⇤ Params
ResNet20 on CIFAR10 MACs ⌅ 40.9M Params ⌅ 0.27M

TMI-GKP [60] ≥ 7 300 91.99 92.18 � 0.19 42.86 43.33
L1Norm-A [28] ≥ 7 300 91.99 90.54 ⇤ 1.45 43.11 35.19
L1Norm-B [28] ≥ 7 300 91.99 90.83 ⇤ 1.16 43.87 19.63
CC [30] 7 7 300 91.99 91.80 ⇤ 0.19 43.47 36.30
SFP [18] 7 ≥ 300 91.99 91.15 ⇤ 0.84 40.32 41.85
FPGM [20] 7 ≥ 300 91.99 91.51 ⇤ 0.48 43.34 43.33
NPPM [11] 7 7 300 91.99 91.86 ⇤ 0.13 43.49 35.19
LRF [23] 7 7 300 91.99 92.23 � 0.24 43.08 43.70
DepGraph [8] ≥ 7 300 91.99 91.38 ⇤ 0.61 42.96 41.11
KPGP* [57] ≥ 7 300 92.46 92.10 ⇤ 0.36 55.10 55.70
LeanFlex-GKP (ours) ≥ 7 300 91.99 92.49 � 0.50 42.86 43.33

ResNet32 on CIFAR10 MACs ⌅ 69.5M Params ⌅ 0.46M

TMI-GKP [60] ≥ 7 300 92.80 92.99 � 0.19 43.08 43.32
L1Norm-A [28] ≥ 7 300 92.80 91.45 ⇤ 1.35 42.63 45.69
L1Norm-B [28] ≥ 7 300 92.80 91.58 ⇤ 1.22 42.96 32.54
CC [30] 7 7 300 92.80 93.01 � 0.21 43.49 32.76
SFP [18] 7 ≥ 300 92.80 91.94 ⇤ 0.86 41.89 42.67
FPGM [20] 7 ≥ 300 92.80 92.41 ⇤ 0.39 43.36 43.53
NPPM [11] 7 7 300 92.80 93.13 � 0.33 43.00 29.74
DHP [29] 7 ≥ 300 92.80 92.26 ⇤ 0.54 42.30 39.01
LRF [23] 7 7 300 92.80 93.04 � 0.24 44.17 43.97
DepGraph [8] ≥ 7 300 92.80 93.04 � 0.24 40.79 33.26
OTOv2 [3] 7 ≥ 300 92.80 90.97 ⇤ 1.83 38.28 44.77
OTOv2
(post-train) [3] 7 ≥ 300 92.80 92.14 ⇤ 0.66 49.77 35.80

KPGP* [57] ≥ 7 300 92.71 92.68 ⇤ 0.03 43.1 43.4
LeanFlex-GKP (ours) ≥ 7 300 92.80 93.01 � 0.21 43.08 43.32

ResNet56 on CIFAR10 MACs ⌅ 126.6M Params ⌅ 0.85M

TMI-GKP [60] ≥ 7 300 93.24 93.95 � 0.71 43.23 43.49
L1Norm-A [28] ≥ 7 300 93.24 92.44 ⇤ 0.80 46.27 42.91
L1Norm-B [28] ≥ 7 300 93.24 92.62 ⇤ 0.62 43.02 31.30
CC [30] 7 7 300 93.24 94.04 � 0.80 44.82 27.78
SFP [18] 7 ≥ 300 93.24 93.15 ⇤ 0.09 43.54 43.61
GAL [33] 7 ≥ 300 93.24 91.27 ⇤ 1.97 22.38 17.94
FPGM [20] 7 ≥ 300 93.24 93.60 � 0.36 43.38 43.49
NPPM [11] 7 7 300 93.24 93.55 � 0.21 44.02 29.54
HRank [32] 7 ≥ 300 93.24 92.27 ⇤ 0.97 37.39 31.54
DHP [29] 7 ≥ 300 93.24 92.42 ⇤ 0.82 42.09 43.73
LRF [23] 7 7 300 93.24 93.93 � 0.69 43.89 42.56
DepGraph [8] ≥ 7 300 93.24 93.79 � 0.55 39.82 26.71
OTOv2 [3] 7 ≥ 300 93.24 91.57 ⇤ 1.67 36.96 43.70
OTOv2
(post-train) [3] 7 ≥ 300 93.24 93.02 ⇤ 0.22 47.70 35.01

KPGP* [57] ≥ 7 300 93.75 93.72 ⇤ 0.03 43.20 43.50
LeanFlex-GKP (ours) ≥ 7 300 93.24 94.00 � 0.76 43.23 43.49

ResNet110 on CIFAR10 MACs ⌅ 255.0M Params ⌅ 1.73M

TMI-GKP [60] ≥ 7 300 94.26 94.90 � 0.64 43.31 43.52
L1Norm-A [28] ≥ 7 300 94.26 92.75 ⇤ 1.51 43.74 44.56
L1Norm-B [28] ≥ 7 300 94.26 92.96 ⇤ 1.30 43.17 36.69
CC [30] 7 7 300 94.26 94.31 � 0.05 44.54 39.47
SFP [18] 7 ≥ 300 94.26 94.44 � 0.18 43.42 43.52
GAL [33] 7 ≥ 300 94.26 93.42 ⇤ 0.84 29.14 31.37
FPGM [20] 7 ≥ 300 94.26 94.18 ⇤ 0.08 43.39 43.52
NPPM [11] 7 7 300 94.26 94.16 ⇤ 0.10 42.46 35.19
HRank [32] 7 ≥ 300 94.26 92.96 ⇤ 1.30 18.57 5.38
DHP [29] 7 ≥ 300 94.26 92.53 ⇤ 1.73 60.25 64.58
LRF [23] 7 7 300 94.26 94.49 � 0.23 43.37 42.30
OTOv2 [3] 7 ≥ 300 94.26 91.58 ⇤ 2.68 37.83 42.44
OTOv2
(post-train) [3] 7 ≥ 300 94.26 93.99 ⇤ 0.27 38.11 42.50

KPGP* [57] ≥ 7 300 93.76 94.01 � 0.25 43.30 43.50
LeanFlex-GKP (ours) ≥ 7 300 94.26 94.92 � 0.66 43.31 43.52


	Introduction
	Background
	Trading performance for deployability: the practical advantage of structured pruning
	Exploring structured pruning with finer granularities: grouped kernel pruning (GKP)
	A common recipe for GKP-based methods: dynamic operations

	Motivation
	Flexible group counts as the dynamic operation in GKP
	Leaning out for an efficient GKP procedure
	Towards a hassle-free experience

	Proposed method
	Preliminaries
	KPP-aware filter grouping
	L2 & geometric median-based GKP
	Post-prune group count evaluation as integral optimization

	Experiments
	Conclusion
	Limitation and broader impact
	Extended related works
	Extended proposed method
	Formal definition of L2 & geometric median-based grouped kernel pruning
	Formal definition of post-prune group count evaluation
	Pseudocode for the proposed method

	Ablation studies
	On different procedural recipes
	On different hyperparameter settings
	Pruning procedure speedup
	Inference speedup: standard convolution v.s. grouped convolution

	Extended experiment results
	Compared methods
	Accuracy gap between competitive methods and LeanFlex-GKP
	Margin of error
	Stable Diffusion Conv2d Pruning Result
	Full experiment results


