
Generative Hard Example Augmentation for
Semantic Point Cloud Segmentation

Supplementary Material

1. Implementation Details
Converting Voxels to Point Clouds As shown in the figures
Generative Point Cloud Reshape and Generative Example
Mixup in the manuscript, we convert voxels to point clouds
for generating semantic point clouds. This operation con-
tains the fully connected layer F (see the left of Figure 1)
to regress the offset (∆x,∆y,∆z) for moving each point
of the source example R(3) to form the new points in the
generated example T

(3)
o . As the right of Figure 1 illustrates,

we use the trilinear interpolation to compute the new label
for each new point in the generated example T

(3)
o . The in-

terpolated labels are taken from the voxelized grid G(T(C)
o),

which is output by the generative network.

FC

Trilinear
Interpolation

RCoordinate
Offset

Voxelized grid
in Eq. 4 Generated

Examples

Voxelized grid G(To) delta(x,y,z)

Example To(3)

F

Source Example R Trilinear Interpolation

G(To(C)) & To(3)

Voxelized Grid (To)



Source Example R(3) Trilinear Interpolation

& T
o
()3()()T

o
C

Example T
o
()3

T
o

Generated Example

Voxelized Grid (To)



Source Example R(3) Trilinear Interpolation

Offset

Generated
Example T

o
()3

& T
o
()3()()T

o
C

[0.8, ..., 0][0, ..., 0.1]

augmax[0.8, ..., 0.1]
label =

Voxelized Grid (To)



Source Example R(3) Trilinear Interpolation

Offset

Generated
Example T

o
()3

& T
o
()3()()T

o
C

[0.8, ..., 0][0, ..., 0.1]

argmax[0.8, ..., 0.1]
label =

Figure 1. The illustration of operation for converting voxels to
point clouds.

Trilinear Interpolation Given the source point cloud
R ∈ RN×(3+C) and the target point cloud T ∈ RN×(3+C),
we voxelize them to the voxelized grids G(R),G(T) ∈
R(M×M×M)×(3+C) by trilinear interpolation, respectively.
For the details of trilinear interpolation, as illustrated in Fig-
ure 2(a) (mentioned in Eq. (1) in the manuscript), it set the
spatial resolution of the grid as M . Specifically, these grids
have |N| vertexes in the grids, where N ∈ R(M×M×M)×3.
And Ni ∈ R3 depicts the ith vertex in the grids. Also, each
point with a weight w from the point to the vertex, where
w ∈ R. The weight will be larger if the point is close to the
vertex. Thus, we aggregate the neighboring points to get the
voxelized grid as follows:

G(I)i =
∑

I
(3)
j ∈N (Ni)

wj · I(3+C)
j

|N (Ni)|
,

wj =
∏

{Ni,I
(3)
j }|{x,y,z}

(1− |Ni − I
(3)
j |),

(1)

where I
(3)
j ∈ R3 depicts the coordinates of a point in the

point cloud examples R or T, and |N (Ni)| is the number
of neighboring points in examples concerning Ni.

As described in Eq. (5) in the manuscript, we conduct the
trilinear interpolation to propagate the category scores of the
voxelized grid to each point of generated examples, which
is illustrated in Figure 2(b). We first compute the weight
coefficients w

′

i, i = 1, 2, · · · , 8, which are from the points
to eight vertexes concerning the generated example To by
Eq. 1. Then we calculate the category scores from the vertex
of the grid to each point according to w

′
as follows:

T(C)
o = argmax(

∑
G(To)i∈N (T

(3)
oj

)

w
′

iG(T(C)
o)i), (2)

where argmax(·) is a function to select the index with the
max value in the C-dimension vector.

(a) Voxelization (b) Propagating Scores

Figure 2. The illustration of operation for Trilinear Interpolation.

Architecture of Encoder and Decoder In the manuscript,
we employ an encoder to embed the discrepancy grid into
latent space and adopt a decoder to get the discrepancy grid
from the discrepancy representation. For the 3D grid, we
follow the idea of U-Net [1] connections to implement a 3D
encoder-decoder. The architecture of the encoder consists
of four 3D convolution layers. Each of them has normal-
ization, LeakyReLU activation, and max pooling operation.
All convolution layers have 43 filters, and the padding size
is 2. Finally, the encoder ends with two fully connected
layers with 2048 and 1024 dimensions, respectively. As
for the architecture of the decoder, it is composed of five
deconvolutional layers, and the setting of filters, padding
size, normalization, LeakyReLU activation, and max pool-
ing operation are the same as the encoder.
Experimental Setups We implement our framework by
PyTorch [2]. We train and evaluate the segmentation and
generative networks on NVIDIA GeForce RTX 3090 GPUs
with 128G memory. We set a batch size of 32 for 200 epochs
in ShapeNetPart data, and a batch size of 16 for 100 epochs

in S3DIS and ScanNet V2 scenes. We adopt AdamW opti-
mizer for the segmentation backbones (i.e., PointNet++ [3],
PointNeXt (C=160) [4], PointMetaBase (C=160) [5], and
DeLA [6]) with an initial learning rate of 0.001. These back-
bones can work with or without data augmentation modules
like the conventional data augmentation (CDA), PointWOLF
(PW) [7], and our GHEA. For a fair comparison, we leave
the hyper-parameters of the segmentation backbones to be
the same as those in the official code packages.

2. Supplementary Experiments

2.1. Sensitivity Analysis of Hyper-Parameters

Number of Generated Examples The number of gener-
ated examples determines the complexity of Weighting of
Hard Example, which is described as Eq. (6) and Eq. (7) in
the manuscript. Here, we analyze the sensitivity of it by se-
lecting the number from {1, 3, 5, 7, 9, 11}. We evaluate the
segmentation results (Cat. mIoU and Ins. IoU), GPU mem-
ory (GB), and testing time (ms) to demonstrate the changing
trends of the PointMetaBase [5] backbone. As illustrated in
Figure 3(a) and (b), the segmentation performances gradu-
ally improve as the number of generated examples increases.
The segmentation network performs best while reaching
the threshold value (e.g., 5). In the latter half of the trend,
the performance decreases when more significant than the
threshold. It demonstrates that an appropriate value of gener-
ated examples promotes GHEA to create examples that are
challenging enough. However, a more substantial value may
lead to weak challenges or general examples that suppress
the learning of the segmentation network. This is because
the number of examples with more significant errors will in-
crease as the number of generated examples increases, which
will cause the coefficients in the weighting operation to be
very close to each other. Therefore, it is difficult to make the
shape of the hard example more like the specifically gener-
ated example, which is much more challenging in the current
stage. The segmentation network need stronger, complex
data that achieves general results.

In Figure 3(c) and (d), both GPU memory and testing
time gradually increased. Because the number of generated
examples is more prominent, reflecting GHEA’s computation
complexity, and the higher cost needs to be paid.
Number of Target Examples In Figure 4(a) and (b), we
depict the sensitivity of target examples for constructing
point cloud pairs with PointMetaBase [5] backbone, which
reflects the impact of the number of discrepancy grids for
each source example on segmentation performances. We
find that the metric scores (Cat. mIoU and Ins. mIoU) are
increasingly higher as the number of target examples contin-
uously increases. This phenomenon demonstrates that more
discrepancy representations can facilitate the generative net-
work to enrich latent space sufficiently, which helps produce

Table 1. The results of different corruptions for PointNet++ back-
bone with Ins. mIoU.

Method Ori. 0.9 1.1 Jitt. 90◦ 180◦

PointNet++ 85.1 85.0 85.0 84.1 59.7 38.8
w/ PW 85.4 85.3 85.3 84.8 63.6 40.3
w/ GHEA 86.4 86.2 86.2 85.9 65.6 43.0

complex examples. However, the more discrepancy grids
for each source example, the more training data increases
significantly. Thus, we set the number of target examples as
20 for the lowest number of six classes in ShapeNetPart, and
the other classes are set as 5.

2.2. Additional Discussions for GHEA

Diversity of Hard Examples We measure the diversity of
the difference between the source and generated examples
from coordinates and labels in the manuscript. In this section,
we evaluate the diversity between each source and generated
examples, which is also measured by the Chamfer Distance
of 3D points (CD in Figure 5(a)) and the L2 distance of
voxelized grids (L2 in Figure 5(b)). Specifically, we select
the smallest value among all pairs of each source and hard
examples. Like the manuscript, GHEA leads to a significant
diversity of all examples in the early epochs because the
insufficient training of the generative network will produce
unreasonable shapes and labels. However, the diversity of the
generated examples increases when the generative network
is trained better. Besides, it decreases in the final epochs.
This is because those target examples’ patterns naturally
limit the generated examples’ diversity patterns.
Robustness Analysis for GHEA We corrupt the samples of
the ShapeNetPart test set to evaluate the robustness of GHEA.
Specifically, we design the following six manners: exerting
scaling with a ratio of 0.9 or 1.1, setting rotation with 90◦

or 180◦, and bringing jittering with Gaussian noise ranged
[-1.0, 1.0] (Jitt.). For each group, we use PointNet++ [3] as
the backbone and set three different strategies: the original
PointNet++ backbone, the backbone with PointWOLF [7],
and the backbone with GHEA.

In Table 1, the first column illustrates the original test re-
sults (Ori.) without any corruptions, for example. Compared
with the first two rows, GHEA achieves better performance
consistently. This phenomenon depicts our framework can
continuously generate hard examples according to the cur-
rent segmentation results. Particularly, comparing the Ori.
and the last row, the sensitivity of GHEA is less than other
baselines, which perform higher results in rotation groups.
Such a result convincingly verifies that GHEA improves the
robustness of augmentation significantly.

86.00

86.50

87.00

87.50

88.00

1 3 5 7 9 11

(a) Cat. mIoU

86.00

86.50

87.00

87.50

88.00

1 3 5 7 9 11

(b) Ins. mIoU

0.0

2.0

4.0

6.0

8.0

1 3 5 7 9 11

(c) GPU memory

10.00

30.00

50.00

70.00

90.00

1 3 5 7 9 11

(d) Testing time

Figure 3. The sensitivity analysis of the generated examples (Cat. mIoU, Ins. mIoU, GPU memory (GB), and testing time (ms)).

77.50

80.00

82.50

85.00

87.50

1 3 5 7 9 11 13 15 17 19

(a) Cat. mIoU

80.00

82.50

85.00

87.50

90.00

1 3 5 7 9 11 13 15 17 19

(b) Ins. mIoU

Figure 4. The sensitivity of the target examples (Cat. mIoU and
Ins. mIoU).

42.0

42.2

42.4

42.6

0 50 100 150 200

(a) CD

63.20

47.70

32.20

16.70 2.1

2.1

2.2

2.2

0 50 100 150 200

(b) L2
1.64

1.43

1.22

1.01

Figure 5. The diversity between each source and new examples
generated in different epochs of the network training.

2.3. Ablation Study on S3DIS
Visualization of Reshaped Examples In Figure 6, we
exhibit the generated examples in the training stage. Com-
paring the first column and the others, the latter scenes show
their remarkable differences from the source examples. It
depicts that GHEA can produce diverse examples to enrich
the data for training the segmentation network.

Source Example 1 Example 2 Example 3

Figure 6. Visualization of reshaped examples in different epochs
during training.

Effectiveness of GHEA for the Segmentation Network In
Figure 7, we verify the effectiveness of the segmentation
network, whether updated by GHEA or not. We depict

1.10
1.30
1.50
1.70
1.90
2.10
2.30
2.50
2.70

0 50 100 150 200

系列1
系列2
w/o GHEA
w/o GHEA

Figure 7. Cross-entropy losses of the segmentation network with-
/without GHEA.

Epoch 50 Epoch 200 Epoch 100 Epoch 200

Figure 8. Visualization of hard examples and segmentation results
in different epochs.

cross-entropy losses of the segmentation network in differ-
ent epochs. The phenomenon on S3DIS is similar to that in
ShapeNetPart. The segmentation network without GHEA
converges faster than that with GHEA. However, the network
with GHEA gets smaller loss values after the intersection.
The generative network can gradually produce more complex
examples for training the segmentation network in the latter
epochs. In Figure 8, we exhibit some hard examples gener-
ated in different epochs. We also visualize their segmentation
results, which are predicted in the final epoch. Following
the visualizations, the segmentation network achieves better
results by learning from hard examples sufficiently.

3. More Visualizations of Segmentation
We provide more segmentation results on ShapeNetPart [8],
S3DIS [9], and ScanNet V2 [10] in Figure 10, 11, and 12,

respectively. These segmentation results show that the seg-
mentation networks are trained without or with the assistance
of GHEA. We find that the backbones with GHEA generally
yield more accurate segmentation results.

4. Limitation Analysis

Source Target 1 Target 2 Hard Example

Figure 9. Mistake results of generative example mixup for GHEA.

We further discuss the limitation of GHEA, which we
will focus on in future work. Although GHEA can signifi-
cantly augment segmentation performances by generating
diverse complex examples compared with random manipu-
lation and discriminative networks, it sometimes produces
unreasonable examples. As illustrated in Figure 9, we weigh
the mixup representation for the complex example by three
discrepancy representations for a source earphone example.
However, the produced complex example contains prob-
lematic labels. This is because the generated examples are
distinctively different in geometry. The generative exam-
ple mixup strategy is not enough to solve this challenging
problem. Therefore, the next step is to improve the gener-
ative example mixup method for aggregating discrepancy
representations.

References
[1] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.
In International Conference on Medical Image Computing
and Computer-Assisted Intervention, 2015. 1

[2] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin
Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
Conference on Neural Information Processing Systems, 2019.
1

[3] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In Conference on Neural Infor-
mation Processing Systems, 2017. 2

[4] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan
Abed Al Kader Hammoud, Mohamed Elhoseiny, and Bernard
Ghanem. Pointnext: Revisiting pointnet++ with improved
training and scaling strategies. In Conference on Neural
Information Processing Systems, 2022. 2

[5] Haojia Lin, Xiawu Zheng, Lijiang Li, Fei Chao, Shanshan
Wang, Yan Wang, Yonghong Tian, and Rongrong Ji. Meta
architecure for point cloud analysis. In Conference on Com-
puter Vision and Pattern Recognition, 2023. 2

[6] Binjie Chen, Yunzhou Xia, Yu Zang, Cheng Wang, and
Jonathan Li. Decoupled local aggregation for point cloud
learning. arXiv preprint arXiv: 2308.16532, 2023. 2

[7] Sihyeon Kim, Sanghyeok Lee, Dasol Hwang, Jaewon Lee,
Seong Jae Hwang, and Hyunwoo J. Kim. Point cloud aug-
mentation with weighted local transformations. In IEEE
International Conference on Computer Vision, 2021. 2

[8] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen,
Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-
fer, and Leonidas J. Guibas. A scalable active framework for
region annotation in 3d shape collections. ACM Transactions
on Graphics, 2016. 3

[9] Iro Armeni, Sasha Sax, Amir R. Zamir, and Silvio Savarese.
Joint 2d-3d-semantic data for indoor scene understanding.
arXiv preprint arXiv: 1702.01105, 2017. 3

[10] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas A. Funkhouser, and Matthias Nießner. Richly-
annotated 3d reconstructions of indoor scenes. In Conference
on Computer Vision and Pattern Recognition, 2017. 3

PointNet++

PointNeXt

PointMetaBase

DeLA

w/o

w/

w/o

w/

w/o

w/

w/o

w/

Figure 10. Part-level segmentation results on the ShapeNetPart. The red dash squares highlight the wrong/correct segmentation without/with
the help of GHEA.

PointNet++

PointNeXt

PointMetaBase

DeLA

w/o

w/o

w/o

w/o

w/

w/

w/

w/

Figure 11. Object-level segmentation results on the S3DIS dataset. The yellow dash squares highlight the wrong/correct segmentation
without/with the help of GHEA.

PointNet++

PointNeXt

PointMetaBase

DeLA

w/o

w/o

w/o

w/o

w/

w/

w/

w/

Figure 12. Object-level segmentation results on the ScanNet V2 dataset. The yellow dash squares highlight the wrong/correct segmentation
without/with the help of GHEA.

	Implementation Details
	Supplementary Experiments
	Sensitivity Analysis of Hyper-Parameters
	Additional Discussions for GHEA
	Ablation Study on S3DIS

	More Visualizations of Segmentation
	Limitation Analysis

