
HRAvatar: High-Quality and Relightable Gaussian Head Avatar

Supplementary Material

Overview
This supplementary material presents more details and ad-
ditional results not included in the main paper due to page
limitation. The list of items included are:
• A video demo (HRAvatar video demo.mp4) with a brief

description of the video results in Appendix A.
• More model implementation details in Appendix B.
• Additional comparison with FLARE and ablation study

in Appendix C.
• Application results for novel view synthesis and material

editing in Appendix D.
• Further discussion on method differences, limitations,

and ethical considerations in Appendix E.

A. Video Demo
We strongly encourage readers to watch the video provided
in the supplementary materials or on the project page. It
showcases the self-reenactment animation of avatars recon-
structed by HRAvatar and includes novel view renderings.
The video also illustrates the visual results of relighting the
avatars under various rotating environment maps and the
ability to perform simple material editing to enhance specu-
lar reflections. Furthermore, we provide visual comparisons
of HRAvatar with two advanced methods, GBS [8] and
Flash-avatar [11], in self-reenactment, cross-reenactment,
and novel view synthesis. A relighting comparison with
FLARE [1] is also included. Overall, the video highlights
our method’s capability to create fine-grained avatars with
excellent expressiveness and realistic lighting effects in di-
verse environments.

B. More Implementation Details
B.1. Preliminary
3D Gaussian Splatting [6] represents 3D scene with explicit
Gaussian points, each point G is defined by its position
(center) X , rotation r, scaling s, opacity α and color c.
During rendering, each Gaussian point affects nearby pixels
anisotropically using a Gaussian function G:

G(x, µ′,Σ2D) = e−
1
2 (x−µ′)⊤Σ−1

2D(x−µ′), (1)

where µ′ is the projected mean of X on the image plane.
Given the viewing transformation W , the 2D covariance
matrix Σ2D is derived from the 3D covariance matrix:

Σ2D = JWΣW⊤J⊤, Σ = RSS⊤R⊤. (2)

J is the Jacobian of the affine approximation of the pro-
jective transformation. To ensure the covariance matrix Σ

Rendering Quality Relighting Rendering speed

Point-Avatar [12] 0.646 Limited ≈ 6 FPS
INSTA [13] 0.764 ✗ ≈ 1 FPS
FLARE [1] 0.698 ✓ ≈ 35 FPS

Splatting-avatar [10] 0.834 ✗ > 120 FPS
Flash-avatar [11] 0.883 ✗ > 120 FPS

GBS [8] 0.980 ✗ > 120 FPS
HRAvatar (Ours) 1.184 ✓ > 120 FPS

Table 1. Key aspects of our method compared to previous works.
The rendering quality shows the inverse of the MAE metric on the
INSTA dataset, with longer bars representing better performance.
’Limited’ indicates that the Point-Avatar method has limited flex-
ibility in handling relighting.

remains positive semi-definite during optimization, it is de-
composed into a scaling matrix S and a rotation matrix R,
as Eq. (2). The scaling matrix S and rotation matrix R are
represented by a 3D vector s and a quaternion r, respec-
tively. The color c is modeled by a third-order spherical har-
monic coefficient for view-dependent effects. During splat-
ting, the image space is divided into multiple 16× 16 tiles,
and pixel colors are computed with alpha blending:

C(xp) =
∑

i∈Gxp

ciσi

i−1∏
j=1

(1− σj), σi = G(xp, µ′
i,Σ2D,i)αi,

(3)
where, xp represents the pixel position, andGxp denotes the
sorted Gaussian points associated with pixel xp. Addition-
ally, a strategy is proposed to adjust the number of Gaussian
points through densification and pruning.

B.2. Training Details
In the first 1500 iterations, we take the albedo map as the
rendered image to learn the head’s albedo properties ini-
tially. Afterward, we switch to shaded image to learn other
attributes. Each Gaussian point’s roughness, Fresnel base
reflectance, and albedo attributes are initialized to 0.9, 0.04,
and 0.5, respectively. While we generally follow 3DGS hy-
perparameters, we make some adjustments. During train-
ing, point densification starts at iteration 1000 and ends at
500 iterations before training completes, with a densifica-
tion interval of 500 iterations. The gradient threshold is in-
creased to 3 × 10−4 to avoid excessive point growth. Dur-
ing training, opacity is reset below the pruning threshold
to eliminate more redundant points. The learning rates for
the Gaussian point positions, appearance attributes, and en-
vironment map gradually decrease as training progresses,
while the expression encoder learning rate is set to 5×10−5.

https://eastbeanzhang.github.io/HRAvatar/


Training a video with 2400 frames takes about one hour.
When using albedo prior to supervision, we apply it ev-

ery 3 frames due to the time-consuming process of extract-
ing pseudo-ground-truth albedo during preprocessing. Ad-
ditionally, since the lighting in the INSTA and self-captured
datasets is relatively uniform, we only apply albedo prior
supervision during training on the HDTF dataset. Further-
more, for subjects in the HDTF dataset, we set a higher up-
per bound for reflectance (τf0max) to account for the specific
lighting conditions.

B.3. Model Details
The shape and expression basis in FLAME are derived
through PCA, with higher dimensions having a small ef-
fect on deformation. To avoid unnecessary computations,
we use only the first 100 shape parameters and 50 expres-
sion parameters, i.e., |β| = 100 and |ψ| = 50. Since
FLAME lacks an interior mesh for the mouth, we follow
Qian et al. [9] by adding a mesh for the teeth, where the
upper and lower teeth move according to the neck and jaw
joints, respectively. Additionally, we add extra mesh behind
the teeth to provide a reasonable initialization for the rest of
the mouth interior.

During shading, normal and reflection vectors sample
lighting from the irradiance and pre-filtered environment
maps. Since both maps must be backpropagated and
mipmaps reconstructed in each training iteration, the com-
putation increases with resolution. To maintain efficient
training, we set the irradiance map Iirr resolution to 16×16
and the pre-filtered environment map Ienv to 32 × 32 with
3 mipmap levels.

B.4. BRDF Reflection Model.
For physical-based shading, we use the Disney model [2]
to describe light interactions with geometry and materials,
a method commonly employed in real-time rendering. This
model breaks reflection into two components: Lambertian
diffuse reflection and specular reflection:

Lo(X,ωo) = Ld + Ls =

∫
Ω

a

π
Li(X,ωi)n · ωidωi

+

∫
Ω

DFH
4(n · ωo)(n · ωi)

Li(X,ωi)n · ωidωi,

(4)

where Li and Lo denote the radiance for the incoming di-
rection ωi and outgoing direction ωo, respectively with n as
the normal. The Lambertian term models diffuse reflection,
independent of viewing direction, allowing us to precom-
pute and store this part in an irradiance map. The specu-
lar reflection term models appearance based on viewing an-
gle, with D, F , and H representing the normal distribution,
Fresnel equation, and geometric function. We use the Split-
Sum approximation [5] to simplify the BRDF integral into

Ground Truth HRAvatar (Ours) FLARE

Figure 1. Visual comparison with FLARE on self-reenactment.
Our method captures facial expression details more effectively and
reconstructs the teeth geometry and hair texture more accurately.

two parts:

Ls ≈ Ienv · IBRDF = (
1

Z

Z∑
z=1

Li(ωz))

· ( 1
Z

Z∑
z=1

DFH · n · ωz

4(n · ωo)(n · ωz)pdf(ωz, ωo)
) .

(5)

Here, pdf(ωm, ωo) is the probability density function re-
lated to D. Both components are precomputed and stored:
Ienv as a multi-resolution mipmap for different roughness
levels and IBRDF , as a lookup table (LUT) based on rough-
ness and the dot product of the normal and observation di-
rection, n · ωo.

C. Further Experiments
C.1. Rendering Speed
Despite the additional computational load introduced by
the deformation and appearance models, our method still
achieves real-time rendering speeds. To provide a reference,
we test the rendering speed on the INSTA dataset using
a single NVIDIA 3090 GPU. Each trained avatar contains
about 75K Gaussian points. We set the rendering resolution
to 512×512 and render 500 images to calculate the average
speed. HRAvatar achieves an average speed of about 155
FPS, with the encoder extracting parameters at about 179



Method INSTA dataset HDTF dataset self-captured dataset
PSNR↑ MAE∗↓ SSIM↑ LPIPS↓ PSNR↑ MAE∗↓ SSIM↑ LPIPS↓ PSNR↑ MAE∗↓ SSIM↑ LPIPS↓

FLARE 26.80 1.433 0.9063 0.0816 25.55 2.193 0.8479 0.1183 25.82 1.715 0.8576 0.1230
HRAvatar (Ours) 30.36 0.845 0.9482 0.0569 28.55 1.373 0.9089 0.0825 28.97 1.123 0.9054 0.1059

Table 2. Average quantitative results on the INSTA, HDTF, and self-captured datasets. Our method outperforms FLARE in PSNR, MAE∗

(MAE × 102), SSIM, and LPIPS metrics.

albedo (LMSE ↓) normal (cosine similarity ↑)

FLARE 0.0665 0.8424
Ours 0.0557 0.9093

Table 3. Albedo and normal evaluation on the HDTF Dataset.

FPS. Similarly, when relighting with a new environment
map, we measured a rendering speed of approximately 155
FPS under the same setup, ensuring real-time performance.

C.2. Comparison with FLARE

Since both FLARE [1] and our method can perform monoc-
ular 3D head reconstruction and relighting, we conduct a
further comparison.
Self-reenactment. The experimental setup is the same as
in the main paper, with quantitative results shown in Tab. 2
and qualitative results in Fig. 1. Our method outperforms
FLARE in both metrics and visual quality, better captur-
ing details of facial expressions, hair textures, and internal
mouth features such as teeth.
Speed. Under the same setup, we test FLARE’s average
rendering speed on the INSTA dataset, which is approxi-
mately 35 FPS. In contrast, our method achieves a rendering
speed of about 4.5× higher.
Disentanglement and geometric. Directly evaluating ma-
terial disentanglement is challenging due to the scarcity of
publicly available real or synthetic face video datasets. As
an alternative, we employ SwitchLight [7] to extract image
albedo as pseudo-ground truth for evaluation. We compare
against FLARE using LMSE (Local Mean Squared Error)
[4] as the evaluation metric. Results are in Tab. 3. Rough-
ness and reflectance are excluded due to varying definitions
and usage across shading models.

Normals are commonly used to assess reconstructed 3D
geometry. To quantify this, since we lack ground truth nor-
mals, we use the SOTA single-image geometry estimation
method, GeoWizard [3], to estimate normals from the im-
ages as pseudo-ground truth. We use the cosine similarity
of normals as the evaluation metric, with results shown in
Tab. 3.

The qualitative comparison of normals and decoupling
results is shown in Fig. 4 of the main paper.

Source actor Full (Ours) Without ℒ𝑗𝑗𝑗𝑗𝑗𝑗

Figure 2. Ablation result on Ljaw. Without the jaw pose regu-
larization loss, the avatar exhibits mouth distortion during cross-
reenactment.

C.3. Ablation Of Jaw Pose Regularization Loss
Without the jaw pose regularization loss, Ljaw, the trained
encoder may extract jaw poses that deviate from the normal
distribution. This can lead to incorrect mouth motion dur-
ing cross-reenactment. As shown in Fig. 2, removing Ljaw

results in mouth distortion, while including this loss effec-
tively prevents the issue.

C.4. Complete Quantitative Results
We present the complete quantitative results of self-
reenactment for each subject on the INSTA, HDTF, and
self-captured datasets in Tab. 4 and Tab. 5. As shown,
HRAvatar achieves superior performance for most subjects,
demonstrating the robustness of our method.

D. Applications
D.1. Relighting
We show the relighting results of the head illuminated by ro-
tating environment maps in Fig. 3. For each map, we extract
the corresponding irradiance and prefiltered maps, applying
them in the shading process (Sec. 3.3). HRAvatar achieves
real-time rendering speed during relighting

For convenience during relighting, we use off-the-shelf
tools to precompute the irradiance map and pre-filtered en-
vironment map from the environment map. Specifically, we
use CmftStudio, a tool commonly used in real-time render-
ing pipelines to process HDR images for image-based light-
ing. With CmftStudio, we extract the original environment
map with a resolution of 1024× 512 into an irradiance map
of 512 × 256 and a pre-filtered environment map with 7
mipmaps, ranging from 1024× 512 to 16× 8.

https://github.com/dariomanesku/cmftStudio


INSTA dataset
bala biden justin malte 1 marcel nf 01 nf 03 obama person0004 wojtek 1

PSNR↑

INSTA 29.53 29.92 31.66 27.44 22.99 26.45 28.31 31.21 25.44 31.36
Point-avatar 27.88 27.64 30.40 24.98 24.66 25.25 26.60 28.83 23.29 28.82

FLARE 27.20 28.55 29.10 25.93 22.50 25.97 26.71 28.67 25.53 27.84
Splatting-avatar 32.14 30.42 30.93 27.66 24.34 27.08 27.85 30.64 26.49 29.54

Flash-avatar 30.27 31.25 32.16 27.45 24.85 28.02 28.28 31.46 25.49 32.03
GBS 32.47 32.23 33.10 28.23 26.11 27.59 28.12 31.35 25.16 32.05

HRAvatar (Ours) 33.10 31.70 33.29 29.28 26.58 28.95 29.68 33.24 26.54 31.26

MAE∗↓

INSTA 1.154 0.849 0.642 1.160 2.996 1.705 1.381 0.775 1.594 0.834
Point-avatar 1.386 1.203 0.869 1.596 2.662 1.800 1.583 1.103 2.083 1.042

FLARE 1.342 0.973 0.910 1.470 2.817 1.706 1.602 1.097 1.392 1.020
Splatting-avatar 0.854 0.838 0.783 1.135 2.309 1.533 1.340 0.917 1.376 0.910

Flash-avatar 1.175 0.670 0.610 1.058 2.133 1.326 1.249 0.819 1.589 0.700
GBS 0.747 0.583 0.520 1.010 1.608 1.311 1.162 0.802 1.803 0.655

HRAvatar (Ours) 0.657 0.616 0.498 0.902 1.293 1.133 1.031 0.580 1.070 0.668

SSIM↑

INSTA 0.8896 0.9460 0.9591 0.9159 0.8736 0.8937 0.8676 0.9484 0.8478 0.9452
Point-avatar 0.8658 0.9116 0.9373 0.8853 0.9063 0.8919 0.8807 0.9145 0.8576 0.9192

FLARE 0.8761 0.9347 0.9363 0.8973 0.8892 0.9027 0.8841 0.9199 0.9015 0.9216
Splatting-avatar 0.9272 0.9466 0.9482 0.9243 0.9041 0.9202 0.9113 0.9411 0.9075 0.9400

Flash-avatar 0.8494 0.9614 0.9611 0.9326 0.9086 0.9270 0.9155 0.9493 0.8996 0.9509
GBS 0.9390 0.9658 0.9690 0.9374 0.9217 0.9365 0.9271 0.9476 0.8910 0.9593

HRAvatar (Ours) 0.9473 0.9635 0.9687 0.9429 0.9352 0.9398 0.9334 0.9647 0.9278 0.9590

LPIPS↓

INSTA 0.0992 0.0541 0.0521 0.0731 0.1351 0.1262 0.1286 0.0446 0.1453 0.0540
Point-avatar 0.0829 0.0637 0.0588 0.0758 0.1247 0.1257 0.1143 0.0589 0.1637 0.0576

FLARE 0.0927 0.0513 0.0582 0.0726 0.1266 0.1068 0.0971 0.0595 0.0947 0.0567
Splatting-avatar 0.0865 0.0564 0.0651 0.0749 0.1326 0.1107 0.0966 0.0545 0.1246 0.0602

Flash-avatar 0.1535 0.0299 0.0378 0.0477 0.1069 0.0868 0.0760 0.0376 0.1035 0.0392
GBS 0.0862 0.0433 0.0481 0.0737 0.1219 0.1076 0.0861 0.0564 0.1417 0.0582

HRAvatar (Ours) 0.0451 0.0306 0.0367 0.0476 0.0992 0.0868 0.0649 0.0279 0.0940 0.0358

Table 4. Complete quantitative results of self-reenactment for each subject on the INSTA dataset. HRAvatar achieves better performance
metrics in most cases. Bold marks the best, and underline marks the second.

HDTF dataset self-captured dataset
elijah haaland katie marcia randpaul schako tom veronica s1 s2 s3 s4 s5

PSNR↑

INSTA 25.00 24.94 21.36 24.61 23.50 26.45 29.16 26.45 25.88 25.37 29.33 24.86 24.086
Point-avatar 24.05 25.56 22.51 23.76 26.28 25.44 27.01 26.51 25.35 27.32 28.09 23.56 24.85

FLARE 25.05 25.66 22.10 23.58 26.98 25.05 29.45 26.50 26.26 26.12 28.32 24.07 24.32
Splatting-avatar 26.08 26.31 22.23 25.80 29.25 25.51 30.98 27.14 25.05 28.20 29.54 25.34 24.22

Flash-avatar 26.29 26.46 23.39 26.67 29.05 28.28 31.56 28.95 26.37 27.26 30.59 28.01 25.09
GBS 26.76 28.29 22.74 26.59 29.20 27.88 31.54 29.48 28.15 29.50 31.64 27.48 26.17

HRAvatar (Ours) 28.24 28.91 24.92 27.23 29.70 27.95 31.75 29.71 29.40 30.19 31.40 27.00 26.84

MAE∗↓

INSTA 1.835 2.161 4.179 2.191 2.602 1.936 1.272 2.487 1.877 1.637 1.377 1.841 2.807
Point-avatar 2.058 2.177 3.493 2.423 1.746 2.092 1.683 2.212 1.852 1.312 1.204 1.903 2.210

FLARE 1.813 2.097 3.732 2.580 1.637 2.207 1.204 2.277 1.762 1.540 1.209 1.736 2.328
Splatting-avatar 1.652 1.915 3.841 2.026 1.260 2.200 0.988 2.183 2.093 1.296 1.110 1.565 2.489

Flash-avatar 1.602 2.052 2.922 1.755 1.312 1.519 0.980 1.865 1.909 1.364 1.079 1.251 2.557
GBS 1.406 1.403 3.216 1.659 1.234 1.452 0.901 1.535 1.379 1.022 0.950 1.285 2.018

HRAvatar (Ours) 1.108 1.319 2.283 1.483 1.079 1.384 0.847 1.477 1.142 0.896 0.792 1.117 1.666

SSIM↑

INSTA 0.8808 0.8337 0.7474 0.8290 0.8528 0.8586 0.9143 0.7700 0.8218 0.8659 0.8722 0.8634 0.7431
Point-avatar 0.8631 0.8275 0.7771 0.8160 0.8694 0.8578 0.8634 0.8339 0.8460 0.8763 0.8867 0.8573 0.8117

FLARE 0.8798 0.8426 0.7773 0.8117 0.8773 0.8517 0.9064 0.8364 0.8522 0.8560 0.8878 0.8716 0.8204
Splatting-avatar 0.8952 0.8562 0.7562 0.8477 0.9094 0.8586 0.9321 0.8337 0.8279 0.8775 0.9038 0.8817 0.8031

Flash-avatar 0.8898 0.8146 0.8133 0.8636 0.9040 0.8982 0.9305 0.8170 0.7774 0.8659 0.8967 0.8850 0.7491
GBS 0.9113 0.8924 0.8068 0.8783 0.9110 0.9091 0.9404 0.8826 0.8799 0.9098 0.9188 0.9029 0.8339

HRAvatar (Ours) 0.9335 0.9036 0.8597 0.8961 0.9254 0.9135 0.9446 0.8951 0.9019 0.9232 0.9283 0.9142 0.8596

LPIPS↓

INSTA 0.1005 0.1698 0.2222 0.1586 0.1417 0.1390 0.0729 0.2415 0.1897 0.1583 0.1523 0.1678 0.2483
Point-avatar 0.0886 0.1360 0.1683 0.1200 0.1147 0.1283 0.0981 0.1686 0.1255 0.0942 0.1024 0.1364 0.1623

FLARE 0.0821 0.1255 0.1589 0.1258 0.1040 0.1193 0.0748 0.1559 0.1217 0.1014 0.1088 0.1331 0.1500
Splatting-avatar 0.0902 0.1476 0.1982 0.1385 0.1033 0.1455 0.0664 0.1907 0.1773 0.1271 0.1194 0.1539 0.1972

Flash-avatar 0.0759 0.1595 0.1387 0.0881 0.0829 0.1011 0.0609 0.1688 0.2346 0.0736 0.0901 0.109 0.2208
GBS 0.0875 0.1515 0.1899 0.1289 0.1113 0.1160 0.0679 0.1850 0.1696 0.1198 0.1305 0.1599 0.2004

HRAvatar (Ours) 0.0504 0.0929 0.1208 0.0723 0.0683 0.0846 0.0485 0.12228 0.1063 0.0662 0.0939 0.1153 0.1478

Table 5. Complete quantitative results of self-reenactment for each subject on the HDTF and self-captured dataset. HRAvatar achieves
better performance metrics in most cases.

D.2. Material Editing

By modeling the avatar’s material properties for physical
shading, we can easily edit the avatar’s materials. In Fig. 4,
we show material editing under new lighting conditions by
gradually increasing the base Fresnel reflectance, which en-
hances the metallic effect and reduces diffuse reflection. As

shown, higher reflectance results in stronger specular reflec-
tions, validating the effectiveness of our physically-based
shading model.

D.3. Novel Views Synthesis
Although the 3D avatar is reconstructed from a monocular
video, it can still render novel views. Fig. 5 shows the vi-



Reconstruct Relighting by rotating light

Figure 3. Relighting visual results. For each environment map, we rotate the lighting to illuminate the head from different directions.

Reconstruct Material Editing with increasing base fresnel reflectance

Figure 4. Visual results of material editing. We gradually increase the avatar’s base Fresnel reflectance under new environment lighting,
enhancing specular reflections. The results align with intuitive expectations, validating the effectiveness of our shading model.



Reference Reconstruct view Novel views

Figure 5. Visual results of novel view synthesis. In each row, the original view of the reconstructed subject is shown on the left, while the
rendered novel views are on the right. Our method produces high-fidelity novel views with strong 3D consistency.

sual results of our method. As shown, HRAvatar renders
novel views of the head with high 3D consistency and qual-
ity, preserving fine texture details.

E. More Discussion
E.1. Method Comparison
FLARE. Similar to most relighting methods, both FLARE
and our approach use a BRDF reflection model to account
for environmental lighting on head appearance. The key
distinction lies in the 3D representation: FLARE adopts
a mesh-based approach, while we leverage 3D Gaussian
Splatting (3DGS) and extend it with physically-based shad-
ing. We further overcome 3DGS’s limitations in modeling
normals and decoupling highlights from albedo. Moreover,
our improved deformation model further enables higher-
fidelity avatar reconstruction while achieving faster render-
ing compared to FLARE.
3DGS-based. GBS. While both GBS and our method em-
ploy blendshapes to model positional displacements, we
introduce: 1) learnable blend skinning for per-point rota-
tions; 2) end-to-end training of an expression encoder to
enhance tracking; and 3) a novel appearance model for bet-
ter material decomposition and relighting. Other 3DGS-
based. Compared to other existing 3DGS-based monocular
reconstruction methods, HRAvatar introduces a more flexi-
ble deformation method and employs an end-to-end trained
expression encoder for more accurate expression capture,

leading to superior reconstruction quality. Furthermore,
we pioneer realistic, relightable monocular Gaussian head
reconstruction. The main differences are summarized in
Tab. 1.

E.2. Future improvements.

The extra computation from blendshapes, linear skinning,
and shading slows down 3DGS rendering, but offloading
these tasks to the GPU via CUDA could mitigate this. These
challenges present opportunities for future improvement.

While albedo supervision from existing models reduces
coupling to some extent, highlights may still be misat-
tributed to properties like roughness or reflectance. Ideally,
the same region, such as hair or skin, should have consis-
tent material attributes. Introducing semantic information
to guide and constrain material learning is a promising fu-
ture direction.

E.3. Ethical Considerations.

Creating realistic, controllable head avatars raises concerns
about potential violations of portrait rights and privacy. It
may also lead to identity theft and misuse in fraud. We
strongly condemn any unauthorized use of this technology
for illegal purposes. It’s crucial to consider ethical impli-
cations in all applications of our method to prevent harm to
the public.
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