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1. Implementation Details
Experimental Device All of our experiments are conducted
on an NVIDIA GeForce RTX 3090 GPU in an Intel Core i7-
13700KF CPU system.
Delaunay Meshing. We use the Computational Geometry
Algorithms Library (CGAL) [3] to construct the Delaunay
triangulation D for the generated vertices V , where D is the
set of finite tetrahedrons and infinite tetrahedrons. The fi-
nite tetrahedrons in D form the convex hull of V , with each
having four vertices from V . At the boundary of the convex
hull, there are infinite tetrahedrons sharing an infinite ver-
tex. Such a setting ensures that each tetrahedron has four
neighbor tetrahedrons sharing common triangular faces. By
classifying the tetrahedrons, any triangular faces both inside
and on the boundary of the convex hull can be extracted. In
our multi-label voting strategy, we sample multiple refer-
ence points within each tetrahedron for classification. Us-
ing the SDF network, we predict the SDF values {fθ(r)}
for these reference points {r}. If fθ(r) > Svalue, r is con-
sidered outside the implicit surface; otherwise, it is inside.
Svalue is the level set that defines the implicit surface and is
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Figure 1. The comparison of our adaptive meshing method with
32-resolution MC using the same element count. The input SDFs
for both methods are the same and our method preserves details
and sharpness well.

typically set to 0. We then compare the occupancy counts
of the two classes, and the class with the higher count de-
termines the tetrahedron’s label.
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Figure 2. Visual results of various implicit reconstruction methods on ScanNet. All methods use 512-resolution MC to extract meshes,
allowing for a comprehensive comparison of the accuracy of modeled implicit representations.



2. More Experiments and Results

2.1. Scalability on Large-Scale Scenes

Lightweight reconstruction in large-scale scenes poses sig-
nificant challenges, requiring reconstruction methods to en-
sure both scalability and detail preservation. The extensive
data involved renders many explicit reconstruction (includ-
ing point cloud downsampling and point set triangulation)
and neural meshing methods unfeasible due to memory lim-
itations. To evaluate the scalability of our lightweight re-
construction on large-scale scenes, we conduct experiments
on the ScanNet dataset [6]. Each scene is sampled with 1
million points, characterized by complex details and miss-
ing regions, which pose significant challenges for recon-
struction. We compare recent neural implicit reconstruction
methods, including Siren [14], NeuralPull [11], DiGS [1],
GridPull [4], and PCP [12], along with the classic screened
Poisson (sPSR) [8]. Given that sPSR requires point nor-
mals, these are estimated using Open3D [17], with the num-
ber of nearest neighbors set to 150.

We first evaluate the implicit representations modeled by
different implicit reconstruction methods. Marching Cubes
(MC) [10] with a grid resolution of 512 is used to extract
dense meshes for all methods. The visual results, shown
in Figure 2, highlight the significant reconstruction advan-
tages of our method. For these complex large-scale scenes,
other implicit methods frequently produce numerous arti-
facts that severely degrade visual quality. In contrast, our
method not only avoids such artifacts but also effectively
preserves fine-grained details, demonstrating the effective-
ness of the proposed hybrid features in enhancing SDF rep-
resentation. The quantitative evaluation results are shown in
Table 1, and our method achieves the best results on all met-
rics. It is important to note that the scenes in ScanNet often
contain incomplete areas, which can lead to lower cham-
fer distance (CD) values for methods that struggle to effec-
tively fill these holes. As shown in Figure 2, our method
is able to produce more complete surfaces, resulting in CD
values that are only slightly different from those of Siren.
However, our method demonstrates a significant advantage
in the F-score (F1), which more comprehensively accounts
for both reconstruction accuracy and completeness. In addi-
tion, our method shows a substantial improvement in curva-
ture error (CE), indicating its effectiveness in preserving the
fine-grained details of the scenes, which can also be proven
in Figure 2.

Next, we further validate the performance of our adap-
tive meshing (AM) on large-scale scenes by comparing it
with Marching Cubes (MC) at a grid resolution of 128. To
ensure a fair comparison, the number of vertices generated
by our adaptive meshing is matched to that produced by MC
at 128 resolution. As shown in Table 1, our adaptive mesh-
ing achieves more accurate results compared to MC. Re-

Method CD ↓ NC ↑ F1 ↑ CE ↓ V F
(10−4) (10−3) (104) (104)

sPSR [8] 29.393 0.819 0.686 5.904 95.3 191.2
PCP [12] 11.207 0.841 0.671 3.937 188.3 376.2
DiGS [1] 4.279 0.868 0.808 2.843 397.3 794.7
Siren [14] 1.886 0.872 0.744 9.815 152.2 304.4
GridPull [4] 6.424 0.859 0.786 4.098 101.4 202.8
NeuralPull [11] 14.614 0.804 0.662 4.785 103.1 204.5
Ours / MC512 1.808 0.912 0.891 1.676 154.7 309.5

Ours / MC128 2.064 0.886 0.872 2.064 8.8 17.6
Ours / AM 1.816 0.896 0.884 1.854 8.8 17.6

Table 1. Quantitative comparison on the ScanNet dataset. Above
the double horizontal line is the evaluation of dense meshes ex-
tracted by 512-resolution MC, used to compare the modeled im-
plicit representations. Below is the evaluation of lightweight
meshes. We maintain the mesh element count of our adaptive
meshing (AM) consistent with that of 128-resolution MC for a fair
comparison.

markably, even with only 5% of the dense mesh elements,
our method still achieves comparable performance, sig-
nificantly surpassing the dense meshes produced by other
implicit reconstruction methods. These results demon-
strate the capability of our approach to achieve high-quality
lightweight mesh reconstruction for large-scale scenes. The
visual comparisons between our adaptive meshing and 128-
resolution MC are presented in Figure 3. Obviously, our
adaptive meshing preserves more details to the greatest ex-
tent possible.

2.2. Edge Retention on CAD Models

We further validate the edge retention capability of our
lightweight reconstruction on complex CAD models. Fol-
lowing NeuralPull [11], we conduct experiments on a sub-
set of ABC dataset [9], which contains scans of one hundred
models. Consistent with previous experiments, we first use
512-resolution MC to extract dense meshes for evaluating
the accuracy of the modeled SDFs. Subsequently, we evalu-
ate the resulting lightweight meshes generated by our adap-
tive meshing and MC with a grid resolution of 32, ensuring
an equivalent number of elements (approximately 0.3% of
those in a dense mesh). Figure 5 presents the visualiza-
tion results of our dense and lightweight meshes. Even us-
ing only 0.3% of the mesh elements, our lightweight mesh
achieves similar results to the dense mesh. A more detailed
comparison between our adaptive mesh (AM) and MC is
shown in Figure 4. Compared with MC, our adaptive mesh
effectively perceives sharp edges and extracts more realistic
lightweight meshes. The quantitative results are shown in
Table 2, and our adaptive meshing (AM) holds a significant
advantage over MC.
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Figure 3. Visual results of lightweight meshes produces by our adaptive meshing (AM) and 128-resolution MC on ScanNet. Both results
have the same number of vertices. The lightweight meshes generated by our adaptive meshing effectively preserve both model integrity
and fine-grained details.

MC32 MC32/topology AM AM/topology GT
Figure 4. Visual results of lightweight meshes produced by 32-resolution MC and our adaptive meshing (AM) method on the ABC dataset.
Both methods produce the same number of mesh elements. In contrast, our adaptive meshing efficiently perceives sharp edges and allocates
vertices densely to preserve sharpness and details.
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Figure 5. Visual comparison between the lightweight mesh pro-
duced by our method and the dense mesh on the ABC dataset.
’MC512’ denotes dense meshes extracted using Marching Cubes
at a resolution of 512, while ’AM’ represents lightweight meshes
generated by our adaptive meshing algorithm, containing only
0.3% of the elements in the dense meshes.

Method CD ↓ NC ↑ F1 ↑ CE ↓ V F
(10−3) (10−2) (103) (103)

NeuralPull [11] 0.805 0.928 0.716 0.285 1072.4 2144.2
Ours / MC512 0.257 0.944 0.758 0.257 1248.2 2496.2

Ours / MC32 0.408 0.911 0.661 0.316 4.2 8.4
Ours / AM 0.352 0.934 0.742 0.281 4.2 8.4

Table 2. Quantitative comparison on the ABC dataset. Above the
double horizontal line is the evaluation of high-resolution meshes
extracted by 512-resolution MC, used to compare the modeled
SDF. Below is the evaluation of lightweight meshes. We maintain
the mesh element count of our adaptive meshing (AM) consistent
with that of MC at a resolution of 32 for a fair comparison.

2.3. Application on Human Mesh
Reconstructing human data is a popular experiment cur-
rently. We use the Dfaust dataset [2] to construct experi-
ments, sampling each shape with 20k points. Some recent
neural implicit reconstruction methods are compared, in-
cluding NeuralPull [11] and DiGS [1]. We first evaluate
the accuracy of the modeled implicit representation. All
methods use MC at a grid resolution of 512 to extract the
surface. As can be seen from Figure 6.a, our method is able
to recover better human details, such as fingers and toes, re-
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Figure 6. Visual results on Dfaust. (a) High-resolution meshes
extracted by MC with a grid resolution of 512 using different neu-
ral implicit reconstruction methods. (b) Lightweight meshes ex-
tracted using MC with a grid resolution of 32 and our adaptive
meshing (AM) algorithm. Both results have the same number of
mesh elements.

Method CD ↓ NC ↑ F1 ↑ CE ↓ V F
(10−5) (10−3) (103) (103)

NeuralPull [11] 1.408 0.977 0.975 1.884 876.8 1754.4
DiGS [1] 1.042 0.982 0.972 0.195 1815.5 3631.1
Ours / MC512 1.039 0.984 0.976 0.179 644.0 1287.9

Ours / MC32 2.685 0.949 0.873 0.432 2.2 4.5
Ours / AM 1.039 0.974 0.976 0.193 2.2 4.5

Table 3. Quantitative comparison on the Dfaust dataset. Above the
double horizontal line is the evaluation of high-resolution meshes
extracted by 512-resolution MC, used to compare the modeled
SDF. Below is the evaluation of lightweight meshes. We maintain
the vertex element count of our adaptive meshing (AM) consistent
with that of 32-resolution MC.

ducing the generation of artifacts. The quantitative results
are shown in Table 3, and our method achieves the best re-
sults on all metrics.

Next, we further test the performance of our adaptive
meshing (AM) algorithm. The mesh element count of our
AM results is set to match that of 32-resolution MC. Table
3 shows the quantitative results. Surprisingly, although our
lightweight meshes contain only 0.34% of the vertex ele-
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Figure 7. Visual comparison between our adaptive meshing (AM)
algorithm and the classic mesh simplification algorithm, QEM.
We extract a lightweight mesh directly from the implicit surface,
while QEM simplifies the high-resolution mesh extracted by MC.
Since QEM only allows setting the output triangular face count,
we match it with ours for comparison. V denotes the vertex count.
QEM faces the problem of robustness.

MC128 QEM0.05 Ours0.05 AM/0.15 AM/0.1 AM/0.05 QEM/0.05 MC(res128)

Our AM/5%QEM/5%MC(res128)
Our AMQEM

Figure 8. Mesh construction comparison of our adaptive meshing
(AM) algorithm and QEM. Our method produces triangles with
more uniform angles.

ments compared to the high-resolution meshes, they achieve
results similar to those of the high-resolution meshes and
significantly outperform the 32-resolution MC. The visual
results of lightweight meshes are shown in Figure 6.b. Com-
pared to MC, our method is able to recover details from the
implicit representation with few mesh elements.

2.4. Comparison with Mesh Simplification
Mesh simplification is also an effective way to produce
lightweight meshes. Unlike our adaptive meshing method,
which takes implicit representations as input, it requires
high-resolution meshes as input. Therefore, from the per-
spective of the entire reconstruction system, three steps are
needed to obtain lightweight meshes: first, fitting an im-
plicit representation from point clouds; second, extracting
a high-resolution mesh using MC; and finally, performing
mesh simplification. However, this three-stage manner typ-
ically results in a loss of fidelity relative to the implicit sur-
face, causing accumulated errors. Additionally, mesh sim-
plification methods often face robustness challenges due to
their strict requirements on the quality of input meshes. En-
suring watertightness of output meshes is often not feasi-
ble, and distorted outcomes may arise, as shown in Figure
7. Nevertheless, mesh simplification remains a strong com-
petitor to our method in some cases. To further compare the
performance of the two methods in generating lightweight

Method CD ↓ NC ↑ F1 ↑ CE ↓ CT ↑ V F
(10−5) (10−3) W/M/NS (104) (104)

MC (res512) 0.558 0.967 0.958 0.106 1.0 86.8 182.6

QEM (15%) 0.594 0.967 0.947 0.128 0.0/1.0/1.0 13.1 25.1
AM (15%) 0.558 0.969 0.959 0.113 1.0 12.6 25.1

QEM (10%) 0.598 0.965 0.946 0.152 0.0/1.0/1.0 9.1 17.2
AM (10%) 0.559 0.968 0.959 0.125 1.0 8.6 17.2

QEM (5%) 0.618 0.964 0.941 0.179 0.0/1.0/1.0 4.8 8.9
AM (5%) 0.560 0.966 0.959 0.154 1.0 4.4 8.9

Table 4. Quantitative comparison of our adaptive meshing (AM)
and QEM on Stanford. QEM takes a dense mesh extracted from
MC at a resolution of 512 as input and reduces the number of tri-
angles to 15%, 10%, and 5% of the original. For a fair comparison,
our adaptive meshing generates the same number of elements.

meshes, we conduct experiments on the Stanford dataset
[5]. Our adaptive meshing method utilizes our learned
SDF as input, whereas the classical mesh simplification al-
gorithm, QEM [7], uses high-resolution meshes extracted
from 512-resolution MC as input. Both methods are set to
produce lightweight meshes, with 15%, 10%, and 5% of the
elements of the high-resolution meshes, respectively. The
quantitative results are presented in Table 4. Satisfactorily,
our adaptive meshing method produces competitive results
compared to QEM, while ensuring correct topology (CT)
and avoiding the creation of non-watertight meshes. This
demonstrates the potential superiority of directly extract-
ing lightweight meshes from implicit surfaces, avoiding the
error accumulation inherent in multi-stage processes. The
outstanding performance also demonstrates the robustness
and accuracy of our proposed adaptive meshing method. As
an additional advantage, our method tends to produce trian-
gles with uniform angles, which are often preferred in finite
element analysis. In contrast, QEM sacrifices uniform tri-
angle angles to preserve sharpness. The mesh construction
visualization is shown in Figure 8.

3. More Ablation and Analysis

3.1. Ablation of Hybrid Features in SDF Network

In the ablation studies about SDF learning within the
manuscript, we demonstrate the effectiveness of each mod-
ule in our introduced hybrid features. The results in Ta-
ble 5 of the manuscript show that while grid features cap-
ture details well, they tend to cause overfitting and artifacts,
leading to significant degradation in the Chamfer Distance
(CD). To better illustrate this situation, we present the visual
results of the ablation studies in Figure 9 of this supplemen-
tary material. It can be seen that the hybrid representation of
grid and tri-plane features combines the complementary ad-
vantages of both, enhancing detail expression while avoid-
ing the risk of overfitting.
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Figure 9. Visual results of our ablation studies on SDF Network.
’Grid’ and ’Tri-plane’ represent the results of using only single-
type features, while our final method uses a hybrid of both fea-
tures. ’Grid’ preserves more details than ’Tri-plane,’ as high-
lighted in the yellow and light green boxes, but it also introduces
overfitting and artifacts, as indicated in the red box. In contrast,
the hybrid features we adopt can avoid this problem.

Neighborhood 
Label Constraint

Figure 10. Visual results of our neighborhood label constraint.
The red triangles represent the triangular faces with non-manifold
edges, which are caused by the misclassification of some narrow
tetrahedrons. These triangulation artifacts are eliminated to pro-
duce a manifold mesh.

3.2. Ablation of Neighborhood Label Constraint
In our Delaunay meshing algorithm, a neighbor label con-
straint strategy is proposed to ensure the manifold prop-
erties of the mesh. Due to page limitations, Figure 3 in
our manuscript only shows a 2D example. To more clearly
demonstrate its corrective effect on mesh construction, we
present detailed 3D results in Figure 10 of this supplemen-
tary material. It can be seen that our strategy can signifi-
cantly reduce the generation of non-manifold edges and tri-
angular artifacts.

3.3. Robustness to Varying Point Density
To clearly demonstrate the adaptability of our method to dif-
ferent point densities, we sample various numbers of points
for experiments on the Stanford dataset [5], including 200k,
100k, and 20k. Since the input point cloud is solely for our
SDF modeling, we use Marching Cubes (MC) [10] with a
grid resolution of 512 to extract the surface. The quanti-
tative evaluation results are shown in Table 5. We also in-
clude reconstruction results from NeuralPull [11] with 200k
points for comparison. As point density decreases signifi-
cantly, our method continues to provide robust reconstruc-
tion. In fact, the results of our method with 20k points out-

Method CD ↓ NC ↑ F1 ↑ CE ↓
(10−5) (10−3)

NeuralPull-200k [11] 0.606 0.963 0.950 0.329
ours-200k 0.558 0.967 0.958 0.106
ours-100k 0.564 0.968 0.958 0.156
ours-20k 0.605 0.957 0.955 0.277

Table 5. Quantitative comparison with various point number.

Method FPS Random Sampling CD ↓ F1 ↑ CE ↓
(10−5) (10−3)

Model-I ✓ 0.7551 0.9282 0.1277
Ours ✓ 0.7550 0.9292 0.1256

Table 6. Quantitative results of different point selector implemen-
tations. Our adaptive meshing method shows robustness to random
initialization of vertices.

perform NeuralPull’s results with 200k points in terms of
accuracy metrics. This further highlights the superiority of
our method in reconstructing sparse data.

3.4. Robustness to Random Vertex Initialization

In our vertex generator, we uses farthest point sampling
(FPS) as the point selector implementation to generate ini-
tial vertices from surface queries. This is mainly because
FPS produces a uniformly distributed point set, preserving
the overall structure of the implicit surface. To validate the
robustness of our method, we employ random sampling as
the point selector implementation to assess the impact of
different vertex initialization. Experiments are constructed
on the Thingi10K dataset [16] and the quantitative results
are shown in Table 6. It can be seen that applying random
sampling only produces a slight performance degradation,
demonstrating the robustness of our method to different ver-
tex initialization methods.

3.5. Limitations

As an optimization-based method, its primary advantage
lies in not requiring ground truth data for training, enabling
direct reconstruction of given unoriented point clouds.
However, excessive time consumption remains a com-
mon challenge for optimization-based approaches. Our
lightweight reconstruction achieves robust results within
twenty minutes, comparable to NeuralPull [11] and DiGS
[1], and significantly outperforms NeuralIMLS [15] and
PINC [13] which require several hours. However, achieving
more efficient reconstruction is still demanding. It would be
a good direction to combine more prior information in fu-
ture work.
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